
A TRIDENT SCHOLAR

PROJECT REPORT

NO. 243

'Distributed Processing Using Single-Chip Microcomputers'

UNITED STATES NAVAL ACADEMY

ANNAPOLIS, MARYLAND

This document has been approved for public
release and sale; its distribution is unlimited.

DTIC QUALITY IS C?DCTED
, 20000406 029

REPORT DOCUMENTATION PAGE
Puble reporting burden lor th,s collection ol mlormanon ,s estimated to average 1 hour per «soon«, including the time tor renewing instructions searchmn .
gathenng .nd maiming ,,,JB needed, and coming and re.ev.ng the collection o. ,nfo,ma„on Send comments rega-dTgTh s b'deTes."' e o^an
col ecbon o. .«tonn.<.on inc.udmg suggestions for reducing this burden, to Washington Headquarters Services. Duectorate to, informationoZZZl IZ oj

Form Approved
OMB No. 0704-0188

existing data sources,
. L, j ,- „ ny other aspect ot this

H,„h^y Su,e^ .„moton WBWB! r»*,0^.,M.M^r»Kr^^ i2is" °™
1. AGENCY USE ONLY (Leave Blank) ' ~ ~ 2. REPORT DATE

19%

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

Distributed processing using single-chip microcomputers
6. AUTHOR(S)

Pritchett. William C.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

United States Naval Academy
Annapolis, MD 21402

8. PERFORMING ORGANIZATION
REPORT NUMBER

11. SUPPLEMENTARY NOTES

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

USNA Trident Scholar
report; no. 243 (1996)

Accepted by the U.S.N.A. Trident Scholar Committee

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

12b. DISTRIBUTION CODE

UL

This project investigates the use of single-chip microprocessors as nodes in a token ring control
network and explores the implementation of a protocol to manage communication across such a
network. A control network is useful when the event to be controlled is located at some distance from
tfie inputs required to control it; likewise, a control network is useful when an application receives inputs
from more sources than a single microprocessor is capable of handling. Such a network allows nodes
to share only the information that is essential for each to perform, eliminating the need for a powerful
and costly computer. This makes it extremely effective in a wide variety of applications ranging from
missiles to home security systems to "smart" automobiles. One type of control network is the token ring
network, where each node is connected serially with the node immediately following il and the one
preceding rt. Its efficiency, simplicity, and determinacy make it an excellent choice in a small control
network. A specific scenario is examined where the position of a marble along a motor-driven track is
controlled using inputs from a user operating a PC as well as a microcomputer-driven interface module
an optical encoder mounted on the motor, and a camera located above the track. Using the information
of the state variables as well as preferences of the user, a digital control system is developed to move
the marble to the proper position.

14. SUBJECT TERMS

Networks; Distributed processing; Token ring; Microprocessors; Serial
communications; Control systems

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

87

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18

U.S.N.A. — Trident Scholar project report; no. 243 (1996)

"Distributed Processing Using Single-Chip Microcomputers"

by

Midshipman William C. Pritchett, Class of 1996
United States Naval Academy

Annapolis, Maryland

1M± fiJtfr
[signature)

Certification of Adviser Approval

Assistant Professor William I. Clement
Department of Weapons and Systems Eneineerine

(signature)

(date)

Acceptance for the Trident Scholar Committee

Professor Joyce E. Shade
Chair, Trident Scholar Committee

/ (signature)

/ m^ /?fc
(date)

USNA-1531-2

ABSTRACT

This project investigates the use of single-chip microprocessors as nodes in a token
ring control network and explores the implementation of a protocol to manage
communication across such a network.

A control network is useful when the event to be controlled is located at some
distance from the inputs required to control it; likewise, a control network is useful when
an application receives inputs from more sources than a single microprocessor is capable
of handling. Such a network allows nodes to share only the information that is essential
for each to perform eliminating the need for a powerful and costly computer. This makes
it extremely effective in a wide variety of applications ranging from missiles to home
security systems to "smart'" automobiles. One type of control network is the token ring
network, where each node is connected serially with the node immediately following it and
the one preceding it. Its efficiency, simplicity, and determinacy make it an excellent choice
in a small control network.

A specific scenario is examined where the position of a marble along a motor-
driven track is controlled using inputs from a user operating a PC as well as a
microcomputer-driven interface module, an optical encoder mounted on the motor, and a
camera located above the track. Using the information of the state variables as well as
preferences of the user, a digital control system is developed to move the marble to the
proper position.

Keywords:

networks
distributed processing
token ring
microprocessors
serial communications
control systems

Table of Contents

Chapters Page

1. Problem Statement
2. Background -

2.1 Networking '" *
2.2 Serial Communication g
2.3 DC Motors .'Z.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'."'.'.' io
2.4 Microcontrollers p
2.5 Image Processing P

3. Dynamics and Control ,s

4. Token Passing and Network Protocol 20
5. Individual Nodes 98

5.1 Node 2: Interfacing 28
5.2 Node 3: Image Processing ?9
5.3 Node 4: Motor Control 34

6. Conclusions ,q

7. References ,,
 41

Appendices

Al Calculating System Equations 49
A2 Integrator State Feedback Design 45
A3 Additive Clock Operations ~ 47

A4 Node 2 Source Code ' 48

A5 Node 3 Source Code 65

A6 Node 4 Source Code ~,
 / j

1. Problem Statement

The purpose of this project is to create a serial network of microprocessors
capable of performing control operations using sensors from remote locations. This
network will be involved in controlling the position of a spherical marble along a tilting
beam driven by a DC motor. The desired position of the ball can be specified by the user
using some manner of input, and the actual position will be determined using image data
from an analog camera. A microprocessor responsible for controlling the motor will
operate using a control law also specified by the user. This will require that one node in
the network be a PC on which the user may test his control law before applying it.

There is a need for a protocol designed with the control network in mind, ready to
handle frequent bursts of data. A major goal in this project is to explore a common
protocol whereby any number of single-chip microprocessors may communicate with one
another, making the project more universal in scope. This protocol should make h easy to
add or remove nodes anywhere in the network as different sensor output stations are
needed. The number of microprocessors in the network will vary according to the
requirement of the specific problem at hand. This number will grow as the project grows
in scope and complexity. The exact number of nodes is not important, but it must be a
number great enough to test the network's capabilities of communication.

An important issue in the project is to make certain that each microprocessor is
able to continue with its assigned task even as it receives data from other nodes in the
network. The purpose of this project is not only to create a message protocol but to
allow microprocessors to perform useful work and still participate in this network. In all
of the microprocessors, it takes some time to receive and process an incoming message
and prepare and transmit an outgoing one. The critical issue is what a microprocessor is
to do if it is about to perform an important function and receives an incoming message.
For example, the microprocessor responsible for monitoring the position of the ball will
take position data at a periodic rate and may be forced to miss a pass if it is processing
information from the network. Perhaps it is acceptable to miss a pass and use the data
obtained on the last pass, or perhaps it is not. This issue must be dealt with for each of the
microprocessors in the network.

The specific problem to test the ability of this network protocol is the position
control of a ball which moves along a tilting track. Figure 1.1 shows the track and ball
combination with the two position states, x and 6, labeled. The user can specify a desired
position either through the use of a personal computer or through the turning of a shaft
with a shaft encoder attached. By using position and velocity data of the ball from a
camera positioned above the track and angular position and velocity data from a shaft
encoder attached to the motor, a control law using state feedback will be designed to
achieve proper response from the motor in order to balance the ball at the desired
position.

Four nodes will interact in this network: three single-chip Peripheral Interface
Controller (PIC) microprocessors and one personal computer (PC). The PC will allow the
user to view information on a monitor as well as to update the desired position of the ball
or change the control law that the problem is following. One PIC will be dedicated to
controlling the motor which turns the track. A second PIC monitors data from the

camera, while a third serves as a link between the network and th* PC * A

mpu« source for the desired position. If these teXj^S?

SAT" ^ POSi'i0n °f *"= ba"- "» ^ " P™<oco,aS™yer

Figure 1.1. Diagram of Mechanical System

2. Backsround

2.1 Networking

A computer network is a system consisting of two or more individual stations, or
nodes, configured in such a way as to allow data to be exchanged between the nodes.
This information sharing is governed by a network protocol, a set of rules which govern
all facets of the communication — it "defines connectors, cables, signals, data formats,
and error-checking techniques as well as algorithms for network interfaces and nodes,
allowing for standard — to within a network — principles of message preparation,
transfer, and analysis on different levels of detail" [1].

The choice of a protocol for a particular network involves many factors, which will
be discussed later. In general, there are two different kinds of networks: centralized
networks and decentralized (or distributed) networks. Centralized networks contain a
master node, which governs all traffic on the network. Typically each of the other nodes,
termed slaves, can communicate only with the master node and not among themselves.
The master node is often a much more powerful processor than the slave nodes because it
is responsible for performing most of the work. In a distributed network, on the other
hand, each of the nodes has the same right to use the network as any other node. The
processors used in each node are usually very similar in power, as each node is responsible
for performing a relatively equal amount of work.

A comparison between centralized networks and distributed networks reveals
advantages and disadvantages of each. The protocol for centralized networks is usually
much simpler than the one for distributed networks [1]. On the other hand, the response
times of distributed networks are typically faster because each node can communicate
directly with the other nodes instead of passing all information through a master node.
Distributed systems also allow each function to be performed by a processor which has the
necessary capabilities for that specific function instead of a single complex computer
performing all operations, thus avoidine unnecessary complexity for simpler operations
[2].

A network can also be categorized according to the geographical distribution of its
nodes. A wide area network, or WAN, spans great distances and may contain nodes
scattered across a country or a continent. A local area network, or LAN, on the other
hand, is a network in which there is a much shorter distance between each node, often on
the order of several kilometers. Before the 1970's most LANs used as data networks
were centralized systems. Since then many different distributed network protocols have
been introduced, such as Xerox's Ethernet, Datapoint's Arcnet, and IBM's Token Ring

[I].
LANs may further be divided into two very distinct categories according to the

type of operation the network is to perform. These categories are data networks and
control networks. A data network is what is often pictured when the term network is
mentioned-several PC's sharing files in an office via a central server, for example. This
type of network differs drastically from the network that is useful to systems engineers —

the control network. In general data networks send large packets of data infrequently,
and require a high data transmission rate when sending these data. Control networks, on
the other hand, receive huge bursts of data packets, dubbed 'ordered traffic' [3]. These
bursts occur very frequently and are very short in length, usually less than 20 bytes. A
control network must operate with nodes which are performing time-critical functions and
cannot pause indiscriminately for data reception or transmission.

The networks mentioned above-Arcnet, Ethernet, and Token Ring-were all
introduced for use in data networks, but similar frameworks have also been used in control
networks. There are several factors to consider in detennining the framework to use in a
control network. These factors include interoperability, efficiency, determinacy,
robustness, and cost per node.

Interoperability refers to the ability of the network to perform when not all nodes
or connections are alike. "The network protocol must be open. Its availability to anyone
on equal terms is crucial to the ability of products from different manufacturers to work
together on the network" [3]. This requires an acceptance of a standard protocol by the
manufacturers. A second issue of interoperability is the need to work in varied operating
environments with mixed media access. 'Tor example, portions of a system may require
expensive fiber in noisy environments, while other portions can tolerate low-cost twisted
pair wires in benign environments" [4].

The protocol efficiency of a control network refers to the ratio of the number of
message bits delivered compared to the total bandwidth of the network. Since only some
of the bits in the message are data bits and the others are overhead bits used for message
routing and other network tasks, an obvious way to optimize efficiency is to reduce the
number of overhead bits required to send a constant number of data bits. Efficiency is also
a function of packet size since the overhead is often a fixed length. For example, a thirty-
two bit message may contain only eight bits of data and twenty-four bits containing node
address and protocol instructions. Protocol efficiency is generally divided into two
categories: heavy traffic efficiency and light traffic efficiency. As will be seen, some
protocols work well in one but not the other.

A third property of a control network that demands attention is determinacy.
"Determinacy, or the ability to calculate worst-case response time, is important for
meeting the real time constraints of many embedded control applications" [4]. Most
systems contain some sort of prioritization scheme where nodes that control tasks
requiring immediate execution may take temporary control of the network to send their
traffic. Determinacy is extremely important so that a network architect will know whether
a likelihood exists for the entire network to freeze as a result of multiple nodes attempting
to gain access to it.

Many network applications require robust operation in order for success. A
network is robust if it can respond easily to unforeseen and unwanted changes in the
network such as an added node, deleted node, or lost token, for example. It is also
desirable for a network to be able to respond quickly in the event that a power surge or
glitch causes a reset.

Finally, the cost per node is one of the paramount considerations in network
design. Different topologies and protocols require differing amounts of hardware and
software resources depending on the simplicity or complexity of the protocol. For cost-

sensitive high volume applications a simpler protocol is often desirable; a more complex
protocol is useful when application growth is expected [4].

It was mentioned above that no definite standards for control networks have yet
been introduced. However, there has been experimentation in several broad areas
including polling, time division multiple access (TDMA), token ring, token bus, binary
countdown, carrier sense multiple access with collision detection (CSMA/CD) and carrier
sense multiple access with collision avoidance (CSMA/CA). These seven protocols each
have advantages and disadvantages according to the application of the network [4].

Polling is a popular method for control networks because of its simplicity and
determinacy. One processor (node) typically polls each of the other processors in turn to
determine if they have traffic to send and then gives them permission to do so. This is
ideal for applications with centralized data acquisition where prioritization and node-to
node communication is not required. Polling, however, requires a large amount of
network bandwidth due to its two way communications and is therefore unacceptable for
high speed applications [4].

The TDMA protocol is used extensively in aerospace operations. Similar to
polling, a TDMA network functions by a master node sending a synchronization signal to
each of the other nodes so they are in essence running on the same clock. Each node is
then assigned a time slice when it may transmit. TDMA uses much less bandwidth than
polling, but node costs are increased because each node requires a stable clock for
synchronization. An additional disadvantage is the need for fixed-time transmissions so
the nodes do not exceed their allotted time [4].

A token ring network consists of nodes connected to one another in a ring shape.
There is no common bus in the token ring protocol; each node is connected only to two
other nodes. A token message is sent from node to node around the ring until a node has
something to send. This node then replaces the token with its message which is
transferred from node to node until it reaches its destination. The determinacy of this
protocol is very good since worst-case token passing time can easily be calculated.
Throughput efficiency during both heavy and light traffic situations is very good since idle
token passing decreases as traffic increases. Looking to the future, the token ring
network's point-to-point connections adapt easily to the growing field of fiberoptics. One
important disadvantage is that a failure of any one node in the network may cause the
entire network to crash. This may create problems that are more difficult to detect than
when one node on a common bus is malfunctioning [4].

A token bus network is very similar to a token ring network in that a token is
passed from node to node in a virtual ring. The nodes are actually connected by a
common bus so each message is sent to all the nodes before the next message is sent. This
requires a great deal more time than the process of direct token passing in a token ring
network. It is superior in that if one node fails the network may still function [4].

In the binary countdown protocol, each node waits for a clear channel before
transmitting. Each node is assigned a certain binary number corresponding to the priority
of the traffic it sends. When h transmits, the node first sends this information on the bus.
Two nodes attempting to transmit at the same time resolve their conflict by sending out
one bit at a time of their assigned number to determine which message has priority.
Typically, a binary 1 indicates a higher priority than a binary 0. For example, imagine

three nodes with priorities 110, 111, and 010 attempting to transmit at the same time
They each transmit their first bit, and the network sees that two are transmitting 1 's so it
locks out the 010 node because its traffic has a lower priority. It then continues checkino
the bits of the remaining nodes until it reaches a point where all nodes are locked out but"

°ue,^$ VTOtoco^ also caUed ^ bit dominance protocol, is used infrequently because of
the difficulty in adding new nodes and the required complexity of the connections [4].

The CSMA/CD protocol allows an almost unlimited number of nodes connected
on a common bus. New nodes may be added or deleted without new initialization Each
node simply sends a message across the bus when it needs to. If two nodes attempt to
transmit at the same time a collision occurs. Analog circuitry detects this collision and
each node transmits its data again after a period of time. This protocol is very inefficient
under heavy traffic conditions, and its determinacy is very poor since multiple collisions
may keep occurring, effectively freezing the network. Ethernet, the popular data network
protocol is based on this protocol. Very similar is the CSMA/CA protocol which
combines facets of the CSMA/CD and TDMA protocols [4].

2.2 Serial Communication

Whatever protocol is used in the network, there must also be a standard for
communication of information between the nodes. Fortunatelv. there are several
standards to which most existing applications adhere. There are stilL however choices to
be made when dealing with intercomputer communications.

There are two different methods by which one can communicate information The
ürst is called parallel communication. In parallel communication, whole words of
information are sent at one time from one computer to another. A computer word is
usually 8 or 16 bits long so two computers would need 8 or 16 connections for one to
transmit a word in parallel. Serial transmission, on the other hand, sends out one bit of
information at a time instead of one byte at a time. Therefore, oniv one data path is
required between nodes. There are several advantages and disadvantages to both Parallel
communication is much faster than serial communication since information is essentially
moving eight times as fast. There is a price for this speed increase, however Eight times
as many connections are required between computers. This can become bulky and very
costly especially in a noisy environment where a quality medium such as fiber'optic cable
is used. In general parallel communication is reserved for short paths such as nodes in the
same room whereas serial communication is more practical for longer distances such as
those between nodes in a typical control network.

The problem with transmitting information serially is that since there is only one
data path for information to travel a large number of bits must travel along the same wire
at different times. This results in a problem if the receiving node misses one or more of
the bits in the transmission process and then decodes the message incorrectly On a
broader note, the receiving node must know when the first bit of the message is going to
be sent. The communications interface can accomplish this in two ways First the
processors can agree that the transmission will occur at a specific time, every millisecond
lor example. This requires that one of the processors, termed a master node provide a

"TW» ■ MLU »wrfwr,

clock signal to the slave node and send or receive data on the rising or falling edges of this
clock. This is called synchronous transmission. The other way for the receiving node to
know data is coming is for the transmitting node to send a start bit immediately prior to
sending data. The processors here do not necessarily need to be running at the same clock
speed, but must be capable of operating at a common speed (i.e., at the lower of the two).
This is known as asynchronous transmission. Because of the fewer connecting wires that
it requires, asynchronous transmission is more practical over long distances, and therefore
more widely used in network applications.

As mentioned, asynchronous serial transmission works by one processor signaling
another with a start bit that it is going to begin transmitting. This start bit is typically a
low state. The other processor, which knows how fast the information is coming and how
many bits of data are coming at a time (usually eight), reads each bit. After all of the data
bits are transmitted, the transmitting processor sends a stop bit of opposite state as the
stan bit to let the receiver know the transmission is complete. This stop bit lasts for an
indefinite period, with a minimum time specification to allow the receiving computer time
to store data before the next byte arrives. These ten or so bits of information-the start bit.
data bits, and stop bit-are known as a frame [5]. A typical frame is shown in Figure 2.1
below.

8-bit character

stop bit stop bit

start bit

Figure 2.1. A Sample Frame

If the start bit or stop bit are not received correctly, a framing error occurs. The
receiver throws out the entire character because it could not be sure it received the right
data. This may not be the end of the problem, however. If a start bit is received
incorrectly as a high instead of low, the first bit of data that is low will be assumed to be
the start bit and the wrong character will be sent. This usually happens if a glitch on the
line generates a false start. If the bit after the stop bit is also high, the receiver will think
this data is valid and accept it. This is known as a synchronization error.

There are many other errors that can occur as a result of garbled transmissions. If
one of the data bits is not transmitted properly, the receiver will simply receive one bad
character. This is known as a single bit error. One way to catch this error is by
performing a character parity check [5]. In a parity check, a parity bit is transmitted
immediately after the data bits and tells whether there were an even or odd number of Ts
in the data. The receiver looks at the data and calculates this value also and then
compares its result with the parity bit. This is one of the simplest error checking
protocols, but also one of the most commonly used. A single parity bit will detect an odd

10

number of bit errors, but cannot determine which bits were in error. It is often called a
"single-error" detecting scheme. It is impossible to detect all possible sources of error,
but it is important to realize that any communication error may result in a momentary or
total failure of the control network.

2.3 DC Motors

A DC motor is a device that converts electrical energy to mechanical energy by
current flowing through a magnetic field. A model of a DC motor is shown below in
Figure 2.2. The components La and R,, represent the inductance and resistance of the
armature, respectively.

Vin Vb

Figure 2.2. A Model of a D.C. Motor

As the applied voltage Vm increases, the current that flows through the armature
increases as well. Since a direct relationship exists between the armature current and the
output torque of the motor, this will cause an increase in motor velocity as well. This is
typically how a DC motor is controlled — by varying the voltage applied to its armature.
This may be done with a transistor or rheostat. The problem with this is when the
transistor operates in its linear region. If the motor is to run at half the applied power, the
other half of the power must be dropped across the transistor and therefore wasted [6].

A better way to control the voltage applied to a DC motor is by using the
transistor merely as a switch and sending a pulsewidth modulation (PWM) signal. The
PWM signal can be varied in duty cycle to send a fraction of the power to the motor
without wasting any power. Instead of half the power being sent to the motor and half

11

dissipated across the transistor, the full power of the battery is sent to the motor for half
the time.

The theory behind the PWM signal is the Fourier Transform By analyzing a train
of pulses with frequency f = fo, we obtain the frequency domain spectra shown in Figure
2.3 (a). As can be seen, the signal contains a DC value (which happens to be equal to the
average value of the function) and discrete values at whole number multiples of the
frequency of the pulse train. A motor acts as a first order low pass filter (shown in Figure
2.3 (b) below) and removes any frequencies higher than its cutoff frequency, £. What is
left, assuming fi is greater than £, is a single DC value equal to the average value of the
pulse train. The inverse Fourier Transform of this is simply a step function of height equal
to the DC value. This step function then drives the motor as if a constant voltage equal to
the value of the step function were applied directly.

Pulse Frequency Spectrum Motor Frequency Response

/N

Voltage

DCValue

Gain (DB)

fo 2fo 3fo 4fo

frequency

■>

frequency

(a) (b)

Figure 2.3. Frequency Spectra of PWM Signal and Motor Response

An equally important consideration as controlling the speed of the motor is
controlling its direction. This involves four switching devices set up in an H-bridge
configuration, with two being turned on at any one time. Fortunately there exists several
H-bridge motor drivers with this circuitry built in. All of these drivers are fairly similar in
terms of the signals required to control them Each requires a power source (usually 12-
24 V) and ground as well as a Phase and Enable signal. The phase signal tells the motor
driver which direction the motor will turn, and the enable signal allows the power signal to
be connected to the motor armature, i.e., enables the motor to run.

There are two ways to drive a motor in this fashion. The first, called the
sign/magnitude mode uses the Phase bit to determine direction and the Enable bit to
determine speed. In this mode, the PWM signal is sent to the Enable bit. The duty cycle
of the PWM signal determines the DC value sent to the motor. It can vary over its full

12

resolution, controlling the speed from full on (100% duty cycle) to full off (0% duty
cycle). The motor is thus only turned on as needed [6].

The alternate mode is the Locked Antiphase. In this mode, the Enable signal is left
at high-the motor is "full on." What is varied using PWM is the Phase or direction signal
A PWM input of 50% duty cycle will enable the motor half the time in each direction at
full speed, thereby canceling one another. Any PWM duty cycle greater that 50% will
cause the motor to turn in the positive direction, with 100% dutycycle causing the motor
to actually turn at full speed in the positive direction. The same is true for thenesative
direction in the lower half of the PWM values. The advantage of this method is that full
torque always exists on the motor. This allows the motor to respond quickly to a chanse
in commanded velocity. The disadvantage is that this method has only half the resolution
of the sign/magnitude mode since the duty cycle ranges only 50% from full off to full on.
Also, greater power consumption results because current is always flowing, even when the
motor is stopped. The reason for this effect is that the Enable bit is always set. This
effectively sends no information to the motor driver, where before, the setting or clearing
of the Enable bit determined the speed of the motor [6].

2.4 Microcontrollers

For embedded applications there are several choices of microprocessors for use
but they can essentially be divided into two groups: 1) microprocessors from makers such
as Intel or Motorola, which are adapted by third parry vendors for use in embedded
applications and 2) dedicated microcontrollers which are not capable of running an entire
PC The real division between a microprocessor and a microcontroller is that the former
requires external RAM and ROM to be added while the latter already possesses required
memory on a single chip. Each has its own advantages and disadvantages.

The Intel 80x86 family of microprocessors is the same line which make up the
heart of most personal computers in the world. These are very powerful and can often be
run at clock speeds exceeding 100 MHz. They also possess, in their embedded mode,
capability to perform many of the same functions as when thev run a PC. For example
many include connections for a floppy disk or VGA display. Another advantage is that
familiar compilers that run on PC's will compile programs for these embedde<fprocessors
as well. This often saves the user from having to learn another language for his embedded
applications. The main disadvantage of such chips is the high cost." Most are in the range
of $400 to $600. For a multi-node network, this can quickly make a project unfeasible "
The boards on which the Intel or Motorola dedicated chips come are also very bulky in
size. This is because the Intel chip itself is only a microprocessor and needs supporting
chips such as AT» converters and display adapters. Finally, it is difficult to exploit thefull
potential of an Intel computer in embedded applications. This often makes the high cost
not very worthwhile.

Compared to the Intel line of microprocessors, dedicated microcontrollers seem at
first severely lacking in power. Their maximum clock speeds usually do not exceed 25
MHz. This is a bit misleading, however. With careful assembly language programming,
they can often run the same operations as a more powerful computer infeweHnstructions.

13

Most are also typically smaller than comparable Intel-based microcontrollers, with the
smallest taking up no more space than a single chip. This makes these dedicated
microcontrollers much more desirable for space-conscious applications. They also
typically cost less than one tenth the amount of Intel microprocessors, making them a
eood choice for applications requiring many nodes.

At this time, one of the best of these microcontrollers is the Peripheral Interface
Controller (PIC) family of microcontrollers. The PIC16Cxx series is representative of a
new breed of microcontroller. These particular devices are 18- to 40-pin chips and require
only one external crystal oscillator to become fully functioning computers. The RISC
(Reduced Instruction Set Computer) architecture contains only 35 single-word
instructions, each of which executes in one clock cycle (except the branching instructions
such as "goto" and "call" which require two cycles). The speed and simplicity of this
design makes these processors ideal for high-speed control applications. In addition, this
particular family of processors includes several varieties which have onboard analog-to-
dieital (A/D) capability, thus further increasing their usefulness in the control field. Often,
control problems require that analog data be collected and control actions be based upon
such data. The PIC16C71 and PIC16C74 are ideal for such applications. Each has a
single A/D unit which is multiplexed to multiple pins on the chip, thus allowing sequential
reading of four or eight analog values, respectively. The PIC16C71 operates on a 16
MHz clock frequency, executing each instruction in 250 ns and is capable of A/D
conversions at the rate of 30 kHz. The PIC16C74 operates at 20 MHz and has an A/D
converter which can perform 62.500 conversions per second (16 us each) [7]. These
processors range in price from approximately S10 to S50 and are the processors chosen
for this research.

2.5 Image Processing

An image is defined as a "two-dimensional light intensity function ./(xvvX where x
and v denote spatial coordinates and the value of/at any point (x.,v) is proportional to the
brightness (or gray level) of the image at that point" [8]. Images are analog in nature; the
brightness/may take on any value at any point and the difference between the values at
different points may be infinitely small. To make image data useful to computers, an
image must be discretized or digitized so that information about the brightness at any
point can be communicated digitally to the computer. The result of this operation is
known as a digital image.

A digital image processor is the core of an image processing system and contains
componentsüiat perform four basic functions-image acquisition, storage, low-level
processing, and display. The module responsible for acquiring and digitizing the image is
known as~a frame grabber, so named because modern image processors are capable of
digitizing a TV image in one frame time [9]. The image data are then stored in memory
called a frame buffer. From here a processing module performs low level arithmetic and
logic operations on the image before it is sent to the display device.

A digitizer divides the two dimensional image into an array of pixels, thereby
discretizing the number of possible coordinates x and>>. Each digital coordinate is known

14

as a pixel. In order to speed calculations, the array is often square with the number of
rows and columns being a power of two, for example 512X512 pixels. The image is
further discretized in the number of brightness levels allowed each pixel. This also
typically is a power of two. A binary image is a digital image with only two brightness
levels-0 and 1. With the smallest amount of information per pixeL a binary image is the
simplest, yet lowest clarity digital image. It is essentially a black and white image, with no
other gray levels. A 256 gray level image, on the other hand, contains much more
information per pixel and is therefore much clearer. It however requires more storage and
communication time to make use of this data.

The image on which a frame grabber operates is the output of a camera. Both
VIDICON and Charged Coupled Device (CCD) are common, with the latter being
preferred due to size and weight. The camera is capable of sending analog information
out one wire at speeds sufficient to display without flickering. The information is sent line
by line with all the odd lines being sent and then all the even lines following. This is
known as interlaced scanning [10]. Between each line a 0-V horizontal sync pulse is sent
to let the image processor know a new line is coming. After a complete picture has been
scanned, a longer vertical sync pulse is sent to indicate the completion of a frame.

15

3. Dynamics and Control

In order for a control system to be developed for the specific application, a
complex study of the physical system is necessary. There are several ways of doing this.
For example, the motor may be given a step input and have its output measured. This
might give a fairly accurate system model. A different approach is to obtain a mode by
modeling the dynamics of the system itself However, because this system is highly
nonlinear, this may prove problematic.

One solution to the trouble of modeling nonlinear equations is to make use of
Lagrange's method, which uses the concept of potential and kinetic energy instead of
forces. Because of the amount of mathematical calculations required by this method, it is
convenient to use a computer to find the solution. In Appendix Al, a MATLAB program
for calculating the system dynamics is shown. By applying Lagrange's method to the
system at hand, assuming the marble rolls without slipping and the angular velocity of the
track has a negligible effect on the velocity of the marble, the following system of
equations is obtained.

-Bx.x = 11 5m\'x - m\x6z - m\g cos((9) (3.1)

l.-Bo6=2m\x'Qx + (rmx2 +1 / 2m; L2)G - tmgx -cos(0) (3.2)

where:
m\ = mass of ball
mi = mass of beam
Bi = linear damping coefficient of ball
Be = angular damping coefficient of beam
lm = motor torque
x - linear position of ball
x = linear velocity of ball
x = linear acceleration of ball
6 = angular position of beam

8 = angular velocity of beam

0 = angular acceleration of beam

As can be seen, these equations are both nonlinear, which makes them very
difficult to use in any attempt to develop a control solution. The equations can, however,
be linearized. By examining values that the state variables are most likely to take,
approximations can be made which will allow for four linear state equations which are an
accurate model for the nonlinear system In order to linearize the system, the amount of
accuracy is determined by how many values the state variables are allowed to take. For
example, one linearization would assume 9 « 0, for the purposes of simplification since
the track is not expected to turn at great angles. This would allow changes to be made to

16

the above equations that remove nonlinearities (for example, the cos(#) in (3.1) becomes a
constant value of 1. Another, more complex linearization algorithm might have several
values that the state variables may take on and use a lookup table for each value.
Whatever system is being used, it is important to note that if the actual variables take on
values too different from the assumptions, the whole linear model becomes useless.

For this specific problem, both position and angular position variables are
linearized about 0. This is legitimate since, as mentioned earlier, the track should not turn
at a great angle. Also, the position will never be more than .5 meter in either direction
since the beam is only one meter long. A few other assumptions must be made in order to
completely linearize the system Since angular velocity is expected to be rather small any
term with 62 is assumed to be zero as well. By making these assumptions, a linear state
matrix can be created. This matrix is shown in (3.3).

X 0 1 0 0 X 0
X

6
=

0

0

-5ft / lm\ 5g 1 7

0 0

0

1

X

e
+

0

0
e_ nu g 1 D

where:

0 0

D = mzL' 12

-Bo ID e_ \ID

J.J

Once a state matrix is formed, a control solution can be begun using MATLAB.
The simplest way to accomplish this is by using an integral plus gain state feedback design.
A model of this design is given below, in Figure 3.1

desired position output position

Figure 3.1. State Feedback Integral Design
The integrator will assure that the error goes to zero even if there are variations

between the actual system and the modeled system. Appendix C shows a MATLAB
program written to perform this function. By adjusting only one line in the program a set

17

of desired poles can be chosen. Changing these poles should change the step response of
the system Since no overshoot at all is acceptable in the case when the marble is directed
to move near the end of the beam (if any overshoot existed, the marble would fall off the
track), poles near the origin are chosen initially. The program has the capability to allow
the user to print these gains in a binary file which may be used as a source of input data to
the PC running in the network. This will allow the user to change the poles using
MATLAB and witness immediately the effect of the new gains on system response.

In order to test both the accuracy of the linear model as well as the effectiveness of
the pole placement on step response, it is necessary to simulate the actual system. This is
accomplished using Simulink, a program which runs from within MATLAB that can
accept data from MATLAB. Here, the actual nonlinear system is simulated according to
the equations obtained using Lagrange's method. At the same time, the linear model was
simulated, and the same input was applied to both systems. The results of this are shown
in Figure 3.2. where the response to both the linear and nonlinear systems are plotted on
the same graph.

The approximated linear response is very similar to the expected actual response
from the system This means that the assumptions made when linearizing the system were
good ones. The responses are also acceptable in terms of overshoot and settling time.
This indicates that the poles selected were also a good choice. The required input torque
can also be plotted using the data from Simulink and MATLAB. Figure 3.3 shows the
torque of the motor in both the linear approximation and nonlinear model. Again, there is
a veiy good relationship between the two. What remains to be seen is whether the motor
is capable of exerting this much torque.

If different poles are chosen by the user, the position graphs began to differ. For
example, if the poles are moved to speed the peak time up, two things happen. First, the
overshoot reaches an unacceptable level (this is expected). What is not expected is the
much larger difference between the modeled response and actual response. This indicates
that the system was forced past the point where the linearization assumptions were valid.
If the user really wanted to make use of this pole placement, the entire linear model would
need to be changed. Fortunately, the desired response from Figure 3.2 remains within
these parameters. These state feedback gains seem therefore a good choice for the design.

18

en
i
o>
tu
_E
c
o
en
O
CL

0.6

0.5

0.4

0.3

0.2

0.1

0
0

nonlinear model

linear model

4 6
time (seconds)

8 10

Figure 3.2. Position Response Comparison of Linear and Nonlinear Models

MPWJUMJ.H.P.>1'P'.

a>

£ -0"

-04

-0.5

-0.6
0

nonlinear model

linear model

4 6
time (seconds)

8 10

Figure 3.3 Torque Response Comparison of Linear and Nonlinear Models

20

4. Token Passing and Network Protocol

By far the most important aspect of the project is developing a message passing
protocol that will be successful in a generalized control network. The protocol primarily
must assure that each node that needs to send data will have some chance to send it
Secondly, it must allow for the most desirable transmission of data possible. Desirabilitv
vanes depending on the network properties that the application requires and includes such
factors as speed, efficiency, and determinacy. Finally, any protocol should consider that
future additions may someday be made and maintain a flexibility to handle these additions.

With these factors in mind, the actual network must be examined. The heart of
any network is the message passing protocol. As mentioned earlier, a token ring network
is simply a group of microprocessors connected in series, with each microprocessor
directly connected only to two others. The first message sent is a startup message and
must be initiated by the user. After this, the network is constantly running itselfwith
messages being passed from one node to another, whether or not'thev contain actual data
If one node has a message to send, it waits for a token which indicates the network is free
and then grabs the token and sends its message. The message is coded for the address that
is meant to receive the message so that if there are anv nodes between the sender and
receiver, they will recognize that the message is not for them and pass it on When a node
receives a message that is addressed to it, it will read the message and perform the
operation indicated. It may then send a message of its own or send a token, depending on
whether it has something to say or not. This process is repeated ad infinitum If a point is
ever reached where not a single node has a message to transmit, then tokens will still be
passed from one node to another continuously.

The communications format for the messages is a standard serial 9600 baud (bits
per second) transfer. Each of the nodes communicates information bv passin° several
bytes of data one bit at a time over two wires (one wire contains the information and the
other is a common ground). One byte (or character) consists of 8 bits of information
bach bit of information is assigned either the value 1 or 0. Depending on the
communication standard used, the bit values are assigned a voltage level. For example in
the RS-232 standard, by which most PC's communicate, a 1 is assigned the value of
-12 V, and a 0 is assigned the value of+ 12 V. The standard used in the network of PIC
processors by necessity needs to rely on TTL voltage levels. Thus, a 0 is assigned the
value of 0 V. and a 1 the value of+5 V. A sample bvte is shown below in Figure 4 1

10 1 1 |0 jl FIT

Figure 4.1. A Sample Character

This character may be represented as the binary number 10110101,. This number
may then, for the sake of convenience, be converted to its equivalent decimal
representation, in this case 181. Using this convention, then, each byte of every message
is a decimal number from 0 to 255 (000000002 to 111111112). As mentioned before "

21

each message consists of two or more bytes of information communicated serially across
one wire.

The way that each node generates these characters varies slightly because each
node has different capabilities. They all generate the same characters, just in a different
format. The asynchronous serial communications format used is identical to the one used
by PC's with the exception of the aforementioned voltage shift. Each character is
transmitted one bit at a time with the least significant bit transferred first. This complies
with the RS-232 standard for personal computers. Figure 4.2 shows how the above
sample character would be transmitted. One can see that following the start bit, the data
transferred bit by bit is 10101101. Comparing this to the sample byte reveals that the data
is reversed because the least significant digit was indeed transferred first. This is no
problem because the receiving node simply shifts the data in from left to right, which shifts
the first character to the rightmost bit and each successive character one bit to the left.

8-bit character

stop bit stop bit

start bit

Fieure 4.2. Transmission of a Character

The method by which each node generates serial communications also depends on
the specific hardware. Two of the three PIC processors serving as nodes in the network
are powerful PIC16C74's with serial communication built into the hardware. This means
that all that is required to transmit data is simply to load a register called TXREG with the
8-bit character that is to be sent. Then, by setting a few control registers to govern the
baud rate and enabling transmission, the data will be sent out at the appropriate speed, and
the processor can be signaled with an interrupt when one byte is finished transmitting.
The program can then proceed to the next byte in the same fashion.

The node that controls the LCD display and communicates with the PC is the less
powerful PIC16C84. This processor does not possess on-board serial communications
hardware. In order for it to transmit the information, it must set and clear the transmit pin
itself according to the data desired to be sent. The processor must also consider the
timing involved. Depending on the speed of the crystal oscillator being used to drive the
PIC (in this case 11.0592 MHz), the program must delay for the appropriate number of
instruction cycles to assure that the time each bit's value is placed on the transmit line is
1/9600 second, or 0.104 millisecond. If this proper timing is not observed, nodes with
standard communications interfaces will interpret the messages as garbage and ignore
them To accomplish this the PIC 16C84 uses a timing loop, where a register is
decremented every three instructions. When this register reaches zero, the processor
sends the next bit of data.

The sametiming loop must be used when the Pre l f,rsu ■ .
Iu tots case, the processor interrupts when ZZT r 'S'° reCeIve a messa8e.
star. bit). The processor Uten dXs for hatfof ,h T ^ '°W <When " obtai"s *«
again jus, to make TO ^ J^wasf0°* , !' T' **en '" °hecks "« ««• »
processor tbeu delays for one fun bi t til ,.V u " ™S "" aCtUa' "« bi'- tie
reads the value on tie receive pto JiSS , '° ""^ °f "" DeM b" H™' «
received, i, checks ,„ make suTfo* fotth J T "f ^ a" *■» bits ™
*en returns ,„ ils min ^oZZ^^t^ " ** °»* «■

tbree sectionrSraSud« foeTst3^ ""T *"' '» * «^ °"°
first character sent is tie address offoe'd t ^ SeC°nd b*eS °f the messa«- The
node to quickly tell whefoer a messat ° ba l */ ""^ is *»• ™s *ws a
thoroughly or passed on ,„ InZTol^T, ™7Z ^""t ^ '°°ked « ™re

address of the „ode that sen, foe mlsfe W KC0°d ^ of <"e message string is foe
receiving node needs to send ^renTS'sa^ ^ * ™M U°™<™ » case foe

fc^owÄrt^ÄS^*' *d *' Md * ™ab'= »"mber of
•o execute. For example, if one node ZZ* * f COmnMd """ ,he rec=™S "ode is
fifird byte of foe mes^ge worn OOOM 0 Tat''° T^"* Mh C°™d' tb<
commands will be e,xplained below After foe'cl 7 X ^ reaSOn for MdinS
data that is necessary for foe receLntode ,„ , P°m°n °f "" meSsa-2c «™« anv
node will know what command i ™!C?b! •" "S*"*" COmmmd ™e ^odins '
be able to send foe appro" ,a „I^S, ^ *° ""^ "' ** 'heref°re

«v. and perhaps i, is. One mav wonder^hvT» „ , '° "^^ COmmfflds » ^
of foe message instead of just nurTers *. fo COmimi,dS Cam"" be sem as Pan
command ,„ execute. The reasZfoa, 1 S '"^S °0de wbich Predefined
in the P,C processor. After,sto,rtlT' ""K » " ** '° M bU,e™ W"'™
its program memorv. which is tbT,a, ofT^t "" WC iS ■">' aU°"ed "» alter anv of
may only change i,s' da,a memory foe tea I 7 'T' '""^^ «*■ ** «C
When a command is received, k merelv cauLT°" """^ "a,a VaUieS are Mred

predetermined subroutine. Tie^eclLTf hi Pr08Tam'°JUmp d0Wn ,0 a

The final section rfd-.Z^AT^.T'"«' WoW"
message character. The CRC. cvdi J Z 7 5 cbarac,er and foe end-of-
cbecking technique that ^s "^^Z^ *m"a iS ' ^ e™
message, i, calculates foe value of foTcRr TP T^ Before ^ °°dc ^nds a
message. I, then smds ^ ^^5^^^ « *« "ther characters in foe

tlis message, i, performs its own calcXtl , SH *■* ^^ WbeD a node re«ives
and compares fois calculated ZlT^ZZTc^ "" ^Z"" °RC CharaCter

«me. „ accepts foe messaae as valid U no, 7/ ? I"™'™ U Ae mo are the
terminates it. Finallv foe end „f T' u CardS ^ messa8e as °°ise and

message. „ is , ^■^^2'«."^^ S ^^'° ^ S™ » ^

simply a special character that each node recognizes upon receipt. When it receives the
token, it checks to see whether it has data waiting to be sent, and either sends that data or
another token. The token message consists of only one character (000000002) and an
end-of message character. It contains no addressing characters because a token may be
sent to any node from the preceding node. Because of the unique way in which CRC is
calculated, the token does not need a CRC character either.

In Figure 4.3, a sample message is shown as it would be received by a node.
Following is a description of how the receiving node interprets the message and carries
out its instructions.

0000 0010 1) TO Address
0000 0001 2) FROM Address
0000 0011 3) Command Number
1001 0101 4) Data
0110 0001 5) Data
1010 0001 6) Data
1011 0101 7) CRC
Olli 1110 8) End-of-message

Figure 4.3. A Sample Message

The first operation that a node performs when it receives a message is to determine
if the message is. in fact, legitimate. As was mentioned before, this is accomplished
through the use of the CRC character at the end of the message. The CRC protocol used
in the network is such that all of the characters received not including the end-of-message
character are added. If the result is zero, the CRC is valid; if not, it fails. The receiving
node, then, is not merely looking at the CRC character. It never distinguishes this
particular character from any of the others. Rather, it adds up all the characters (excluding
the end-of-message character) and checks for a result of zero. The CRC character is
merely there to assure that the addition equals zero. For example, looking at the sample
message, a receiving node would begin adding the bytes in a binary sense and throwing
out any carry bit that may occur as a result of an addition overflow. (In decimal terms,
this can be thought of as adding a group of numbers together one at a time and subtracting
256 whenever the sum reaches or exceeds 256, i.e., modulo 256 arithmetic.) The addition
of these particular bytes would go as follows: Each byte has the following decimal value,
respectively: 2, 1,3, 149, 97, 161, 99, 126. The end-of message character, which is not
used in the CRC calculation, has the value 126. A sum of the first six bytes would yield
2+1+3+149+97+161 =413. Since this is greater than or equal to 256, 256 must be
subtracted from the sum to give 157. When the next byte (the CRC byte) is added to the
running sum. the following result is obtained: 157+99 = 256. Again, since this is greater
than or equal to 256, we must subtract 256 again to give the number zero. Since the next
character is the recognizable end-of-message character, it is not added in the calculations.
The receiving node then stops looking at the characters and checks the CRC sum. Finding
that it is indeed zero, the node accepts the message as valid and begins processing it.

24

The node then looks at the first byte of the message and compares this number to
its own address which is stored in its data memory. Assuming they are the same, the
processing continues. If they differ, the receiving node retransmits to the next node in the
sequence the exact message it received. (There is an option at startup to initialize all
addresses of all nodes to zero. In this case, when node receives its first message, it will
set its address to the value of the first byte of the first message it receives. It can then
send a message initializing the next node in the chain.) If the addresses are the same,
which we will assume for our example, the node proceeds to the next byte of the address,
where it stores the address of the sender. At present, this feature is not used to its
maximum potential. While a node still records the sender, it never actually uses this
information. Leaving this as part of the general protocol however, allows for easy future
improvements and customized messages.

With addressing complete, the receiving node looks at the third byte of the
message — the command byte. It stores this command number in a data register and
performs a jump to the appropriate subroutine. Appendix A4 gives the details of this
operation.

When the processor jumps to the appropriate subroutine, it may require some data
(supplied in the message string) to complete its task. This data is taken from the
remaining bytes in the message. In the example, it can be seen that Command 3 required 3
bytes of data. This data is taken from bytes 4. 5, and 6 of the message. As mentioned, the
sending node knows what command it is telling the receiving to node to execute and
therefore knows which data to send in the remaining bytes of the message.

At this point the receiving node is finished executing its command. This command
may or may not have required it to send a certain message to another node or even to the
same node that sent it. In this case, it sends this message right away in the same format as
discussed earlier. In most cases, however, a command will not require that the node send
data across the network. In these situations, after a node has executed the command it
was instructed to execute, it checks a flag to see whether input from the user or attached
sensors requires it to send a message. This may occur when the camera detects a change in
the position of the ball or when the user turns the shaft encoder, indicating a change bthe
desired position of the ball. If it has data to send, h jumps to the subroutine which loads
the data into the appropriate message registers and then goes to its Transmit subroutine,
which sends data from the message registers until the end-of message character is reached.
If the computer, after having received a message addressed to it or a token, discovers that
it does not have data to send, it simply sends a token to keep communications going.

This seemingly simple format still has various weaknesses that must be overcome.
For example, if one node, because of sensor input, grabs the token every time that it sees
it and sends a message for another token down the line, no processors between this node
and the node to which it sends information will ever have the chance to transmit a
message. Because this problem is more application specific, it must be dealt with
depending on the application. In the application presented, the node communicating with
the camera is the only node whose sensor input might direct it to send information nearly
every time it encounters a token. The problem is solved in this case by placing the node
that receives these messages immediately following the node sending them in the ring
sequence. Another solution might have been to have the camera node send a message

only every five
time to send th

times it sees
eir traffic.

a token. for example. This would allow the other nodes

25

ample

This problem seems small but it could actually effectively lock out all other nodes
from communicating across the network. One of the main reasons for choosing a token
ring network in the first place was its almost perfect ability to guarantee every node a
chance to send a message when it needed to. The removal of this benefit by poor
placement of two nodes in the network who need to engage in a great deal of one-way
communication could be disastrous.

A diagram of the network as it is implemented is shown in Figure 4.4. As can be
seen, the network contains a double loop, with one particular node being assigned to both
loops. The reason for this is to accommodate a personal computer into the network yet
still allow each the PIC processors to communicate if the PC were removed. The extra
work required by the node attached to both of the loops will be explained in detail later.
The important point to note is that only one token is actually being passed around between
both loops. The node which acts as a conduit between the loops is able to detect which
node it receives its last message from and send the next message to the other node. A less
physically accurate, but more theoretically correct model of the network is shown in
Figure 4.5. Here, the network is modeled as a single loop with one node appearing two
times in the loop. This represents how the actual information passes when the PC is
present in the loop.

Figure 4.4. Network Connection Scheme

26

Figure 4.5. Network Token Passina Model

It is convenient to number the nodes in order to more clearlv describe the specific
algorithm that each follows while the network is running. The most intuitive svstem of
labeling is simply to label the processors with the actual address that thev possess upon
startup. This addressing system is shown below in Table 4.1. Each node of the network is
preset to follow a specific algorithm to handle message passing. That algorithm will be
explained here briefly to show the broad picture of the token ring and then explained in
detail in the following chapters. Node 1, the PC, starts the sequence with a keystroke
from the user. This initiates a token pass to node 2, which then checks to see if it has any
iniormation to send, specifically, a new desired position that the user may have updated '
using the shaft encoder attached to the LCD display. If the position did change which
occurs relatively infrequently given the speed at which messages pass around Ve network
node 2 generates a message to node 1, informing it of the desired change of position This
message will be passed through nodes 3 and 4 and back to node 2, the sender of the

27

message. Node 2 will recognize that the message was relayed from node 4, and therefore
transmit it to node 1, the PC. The PC will then update the change in desired position on
the screen and send a message to node 2 telling it that it may now change the desired
position. Now node 2 sends a message to node 4, telling the motor-controlling PIC the
new desired position of the ball. No response to this message is needed. If the desired
position had been changed at the computer display, node 1 would have informed node 2 to
change its desired position and it would have relayed this information on to node 4.

Node Processor
PC
PIC

PIC

PIC

Function
Display state variables, allow changing of desired position.
Handle communications with PC, Display position and desired
position on LCD display.
Monitor camera inputs and send them to motor-controlling
PIC.
Control motor, using digital state feedback.

Table 4.1. Nodes and their Functions

This seems rather complicated, but the entire process requires at most two loops in
the ring, and this is only if the desired position changes. If the user makes no changes at
the PC or LCD console, then these two nodes pass tokens to node 3, where a check is
made to see if the camera detected a position or velocity change of the ball. If either of
these variables have changed, then node 3 sends the new values to node 4, where the
control routine uses this information. Once node 4 has received the token (or a message
addressed to it), it decrements a counter. When this counter reaches zero, it transmits all
of its state information to node 1, the PC. for display. The counter can be set to any
number, depending on how frequently the display needs to be updated, but the process is
so fast compared to what the eye can see that it does not have to pass it very often. This
also cuts down on message traffic which may have precluded another node from sending
data.

28

5. Individual Nodes

5.1 Node 2: Interfaces

Condon o™Z ZPC ^IT^ ^ ** " "** '" ^ *» "« "
network. „ a,s„ prims position and deseed „sMoTiSoll" ^n'Zf "^

the difficult iZlT^ZZ »"aITT"*'° "" '^ *<*« '°

of the first iocomn^rbi Id "d ' vT T* Pr°CeSS°r <W,ys Un"'the "a*™
bit until i, readTthnoo hT» t0"""™ dA^ ">the »"P™' «fever,
repster. I, tnen chect^'se ' ■ßZl"™ "* u^ "^ C"araCIer '" *** «• • '
besnns Ptocessin, h „ ss^/e tf „„ ,r " "" end-°f m^Se character. If i, is. i,
another stan bit causes i:Totl ? "T" ?XeCUting itS min Pr°P™ ""0
sanapied by tbe ^^^ $£/£" '"' *™ '" ' *« °f <** *

start bit
data byte stop bit

sampling function

Figure 5.1. Sampling of an Incoming Transmission

approxim^ v 10 we rr^
SH T^ ^ With the te»S^ messase

besides the co^SS^ tL^ÄÄ S?tT T ^7^
-ed for rea! time data as much as some J^j£™ 7^2 Ä£b£

29

seriously if the display is not updated 10 ms from receiving the command. Other nodes
might react unpredictably if one of these messages interrupted its critical timing loops. If a
PIC without serial communication were used for one of these nodes, a new time-interrupt
driven routine would need to be used, where the processor is able to return to the main
part of its program and come back to check the data bits at their midpoints. This would
not be too difficult a problem

The processor at node 2 must also distinguish between communications coming
from the PC and those coming from other nodes in the network. With only one interrupt
pin. this task requires either that polling be used or that the receive signals from the two
different sources actually come in on the same pin. This second method is possible usins
an OR gate to allow whichever of the two signals comes in to pass and two distinct
transmit pins — one for each of the two connecting nodes. A diagTam of this is shown in
Figure 5.2 Since both sources cannot transfer at the same time, the data out of the OR
gate will always be valid transmission data. The problem is detecting which of the nodes
actually transmitted. If one of these two nodes generated a messaeethen the sender can
be discovered merely by reading the from address attached to all messages. If however,
the more likely situation arises where one of the two nodes is either passing alons a token
or a message transmitted by a different node, there is no way to tell where the message
came from.

Transmit from PC

Transmit from PI
Receive

Figure 5.2. Receive Input Logic of Node 2

The solution to this problem is adding a two byte prefix onto all messages from the
PC. This will allow node 2 to immediately identify which node sent it the message. It can
then retransmit the message to the node that did not send it. The token character, instead
of simply a zero followed by an end of message character becomes the two prefix bytes,
followed by the zero, then a CRC, and finally an end-of-message character. The CRC '
byte is now needed because, presumably, the prefix characters"are not both equal to zero,
so they will skew the CRC check without a CRC character to force it to zero.

5.2 Node 3: Image Processing

An integral part to the control aspect of this project is the method of measuring the
values of the states so that they can be used in a control algorithm. The measurement of
the linear position and velocity of the ball is performed by a sensor suite consisting of a
CCD analog camera, an LM1881 sync separator, and an LM339N quad comparator.
Each of these components allows for the proper communication of useful digital data
between the camera and the sensors.

30

The camera has only three required connections: +12 V DC, ground , and the
video output signal. This output signal is analog in nature and can be"viewed on a
monitor. The camera sends out visual data in an interlaced format; it sends all of the odd
lines followed by all of the even lines. The camera is able to transmit these signals at such
high speeds that it appears that the picture is being refreshed all at once. Between each
line, the camera sends a horizontal sync pulse to indicate another line is coming This can
be seen in Figure 5.3, where a typical line of data is shown. The sync pulse latts for
approximately 5 microseconds. During this time a blanking voltage of 0 V is sent to the
monitor. After the sync pulse, thereis approximately 5 more microseconds of useless data
before the actual line data is transmitted. Each line of data lasts approximately 63.5
microseconds.

Similarly, after each half screenful (262.5 lines) is transmitted, the camera sends a
vertical sync pulse to indicate that another page is coming. Shown in Figure 5 4 this
pulse, which occurs much more infrequently than the horizontal svnc. las^s for a much
longer duration (approximately 240 microseconds). The time between vertical svnc pulses
is approximately 16.67 milliseconds, the time required for 262.5 horizontal svnc pulses
and lines of data to go by. Again, there are useless data transmitted before tie first visual
line.

63.5 us

Figure 5.3. Analog Line Data

240 us 1

vertical sync

Figure 5.4. A Vertical Sync Pulse

Unfortunately, data sent in this way are not very helpful to the user of a digital
computer. The solution to this problem is the LM1881 sync separator. This 8-pin chip
takes as its input the analog output of the camera. It analyzes the camera signal and
"strips" several useful signals from it. The vertical and horizontal sync pulses without the
corresponding line data are outputs of this chip, as is a signal which changes sign each
time the camera switches between transmitting even lines and transmitting odd lines. Each
of these signals is extremely useful to the microprocessor because it is purely digital; the
only allowable output voltages are 0 V and 5V. One can, for instance, detect what row to
monitor by watching the vertical sync pin until the pulse is received and then counting the
horizontal sync pulses until the desired row is reached.

Now that the various sync pulses have been removed so that they may be used
efficiently by the microprocessor, the analog data must be manipulated in a similar manner.
For this particular application, the camera is searching for a white marble on a dark gray
background. Assuming the computer can find the right line of data to read, its data will
look something like Figure 5.5. The entire line will be dark except at the coordinates
where the ball is located. What is needed is a way to tell the computer digitally when the
ball is found. The solution to this part of the problem is a simple comparator whose two
inputs are the analog output of the camera and a constant threshold voltage which is
supplied by a voltage divider. The output of the comparator will simply be 0 V for every
instance in time where the camera's output is less than the threshold voltage. When the
camera's output voltage exceeds the threshold voltage (i.e., when the ball is sighted), a
signal of 5 V will come from the comparator. The microprocessor can monitor this
change and therefore be able to locate the ball.

32

ball intensity

voltage threshold

-/"

Figure 5.5. Camera Output When Ball is Found

With all the signals now conditioned to act as inputs to the PIC16C74
microprocessor, what still remains is to actually implement an algorithm to continuously
monitor the position and velocity of the ball. The algorithm is interrupt-driven for precise
timing and quick response. There are myriad interrupts on the PIC 16C74. These include
a pin that will interrupt on low-to-high or high-to-low transition, several pins which will
interrupt when they change value, a timer that will interrupt when it overflows, and
numerous others. Because of the many inputs to the processor, it would be difficult and
time consuming to simply poll each input until one of them changes. Furthermore, a
possibility exists that important data could be missed if the microprocessor was polling
another input when data changed on the relevant line. To prevent this from happening,
interrupts are used which allow the program to continue ninning until a certain condition
is detected by the hardware. This causes the program to jump to a subroutine where
different actions can be taken depending on the source of the interrupt.

The PIC microprocessor monitoring the camera node uses three different
interrupts for the purpose of determining the velocity. The odd/even signal from the sync
separator connects to one of the input pins on the PIC with an interrupt on change feature.
Every time this signal transitions from low to high or high to low, an interrupt is^
generated. This allows the PIC to prepare for aU of the*even or odd lines to be
transmitted. The horizontal sync pin from the sync separator is connected to the only pin
on the PIC that will interrupt only on one-sided transitions (low-to high, for example).
This can be set at compile time to occur when the pin transitions from high-to-low or from
low-to-high, but not both. In this particular case, since the horizontal sync is a low-going
transition, the interrupt pin is set to monitor high-to-low transitions. The third interrupt"
used is generated by the internal timer. The PIC possesses an internal timer that
increments every instruction cycle. By using an available prescaler, this timer can also
increment every 2, 4, 8, 16, or 32 instructions. The timer is a one-byte register, so its
maximum value is 255. When the timer increments from 255, it overflows to zero, and the
timer interrupt flag is set. This interrupt is extremely useful for calculating time dependent
quantities such as velocity.

The basic algorithm for the node watching the camera is outlined in the following
steps:

JJ

1. Wait for the odd/even pulse — this tells the microprocessor that the beginning of
a screen has been found, giving it a reference point for counting lines as they are
transmitted. Both odd and even frames are equally useful, so no distinction need be made.

2. Wait until desired number of horizontal sync pulses have passed — after the
odd/even pulse, a certain number of lines will be transmitted before the line on which the
relevant data exists. Count and wait as these lines pass.

3. Measure the time until the ball is found — this action is performed without the
use of an interrupt. Once the correct line is located, the output from the comparator is
simply polled until a high value is obtained (this is the value where the camera's output
voltage exceeds the threshold voltage). This time can easily be converted into a distance,
with experimentation.

4. Calculate velocity every 10 ms — here the timer interrupt is used to measure an
exact period of time so the velocity can be quickly calculated. Whatever the position is
when this interrupt occurred last will be subtracted from the position at the current
interrupt. This will tell how far the ball has moved in 10 ms, i.e., we have calculated the
ball's velocity.

5. Repeat the process — wait for the next odd/even pulse and begin again.

The effect of the node attached to the camera in the overall token passing process
is fairly simple. It must have the ability to pass any messages it receives to the next node
in the sequence (as must all the nodes) as well as the ability to generate a message that
sends the position and velocity data of the ball to the motor-controlling node. This node
does not, however, need to worry about receiving any messages since there are no
parameters that ever need changing. The algorithm for message handling is simple. If the
node receives a message addressed to a node other than itself, it checks the CRC and then
passes along the message to the next node in the ring. If the node receives a token, it
checks to see whether the position and velocity of the ball have changed since the last
update. If one or both of them have changed, the node sends a message to the motor-
controlling node (which happens to be the next in sequence) updating these two states. If
the node happens to receive a message addressed to it, it checks the CRC but ignores the
content of the message and treats it like a token. If the CRC check ever comes up wrong,
the node ignores whatever message was received and sends a token.

Part of this algorithm works so well because the node watching the camera output
is positioned immediately before the motor-controlling node in the sequence. If there
were nodes in between the two, a different, more complicated algorithm would need to be
written so that the node assigned to the camera does not take control of the token every
time it receives it. This is acceptable presently because its message is always for the node
immediately following it. However, if nodes between these two wanted to send a
message, they would never have the chance except in the rare case where position and
velocity data did not change between passes. This placement is not an accident, nor is it

simply a convenient way to avoid a problem. In a token ring network, it makes a good
deal of sense regardless of physical location to place a node that sends messaoes *"
exclusively to one other node immediately preceding this other node. This is"especiaUv
true tf the sending node must send this data frequently, as is the case with the camera-"
watching node.

5.3 Node 4: Motor Control

The node which is most directly responsible for the implementation of the motor
control is the PIC16C74 processor at node 4. This processor is responsible for accepting
desired position inputs from nodes 1 and 2 and actual position and velocitv inputs from *"
node j. At the same time, this processor must monitor the turn of the motor to measure
Üie two other states-anguJar position and velocity of the beam. This requires a *reat
deal of the processor's resources and therefore is best suited to the PIC 16C74 "

The processor measures the angular position and velocitv of the motor'bv usino an
optical shaft encoder which is attached to the motor itself. This'shaft encoder has two"
important outputs which are denoted Phase A and Phase B. These are the outputs that
change as the motor is turned. A representation of the two outputs is shown below in

B

Figure 5.6. Phase Outputs of Shaft Encoder

The way these outputs work is fairly simple. As the motor turns in a clockwise
direction, the two signals proceed from left to right in the figure above If the motor
instead moves counterclockwise, the signals move from right to left. The signals change
at a speed proportional to the motor speed, with a resolution of 4000 phase"transitions"per
revolution. By monitoring the changing of these signals, one can easily determine how far
and in what direction the motor has moved.

The way in which the program performs this is by accepting Phase A as the input
to a pm which interrupts on a low to high transition and Phase B on a noninterruptable
pin. Whenever Phase A goes high, the program checks Phase B to see whether it is high
or low. I his determines motor direction. For example. Figures 5.7 (a) and (b) show the
difierence of the two signals in a clockwise and counterclockwise motion These signals

35

at first look the same, but upon closer inspection, are very different. Each time Phase A is
transitioning from low to high in figure 5.7 (a). Phase B is at a low point. On the other
hand, each time Phase A goes from low to high in the counterclockwise direction, in
Figure 5.7 (b). Phase B is high. So the processor knows after checking Phase B that the
motor moved one count in either a clockwise or counterclockwise direction. It can store
this in a register and update it each time an interrupt is detected.

It may be noted that this method of measuring the angular position reduces the
precision by one fourth. Instead of updating the angular position register each time either
phase changes value, it is updated only when phase A goes high. This reduces the
resolution to 1000 counts per revolution. It is advantageous to give up this resolution
because it is not really needed. At 1000 counts per revolution, the register storing the
angular position increments nearly 3 times for every degree turned, easily precise enough
for the current problem If the processor were to interrupt four times as often, problems
with timing and switching between functions would arise much more frequently. There
would be little time to spend in the main program and excessive amounts spent in the
interrupt routine.

>v J\ /v. A

B

(a) Clockwise Motion

B

(b) Counterclockwise Motion

Figure 5.7. Phase Outputs of Shaft Encoder

Once the motor-controlling node has calculated the angular position and velocity
of the track using the shaft encoder, and has received from the camera node the position
and velocity of the ball, it is ready to begin implementing the state feedback control that

36

was discussed earlier. Because of the digital nature of the microprocessor, the feedback is
sampled at a regular time interval. This data is used to calculate the torque that the motor
must exert in order to drive the ball toward its desired position. The samplina time chosen
tor this particular problem was 10 milliseconds. This allows ample time for the manv
mukiphcations required to obtain the solution. Because the processor has no built in
multiplication routine, repeated additions are required to multiply two numbers tosether
I his requires time as one register is shifted while the other is added repeatedly "

As mentioned before, the proposed design is an integral state feedback design
I ms requires the processor to perform some operation comparable to an intearal of the
error data it receives. The way the processor accomplishes this is by performing a digital

. °rder EuIer aPP™ximation to the integration. A first order Euler approximation^
given in (5.1) with the equivalent integral form shown in (5.2).

x(t + At) = x(t) + x(t)At (5i)

\x{t + At)dt = ^x{t)dt+x{t)At (5.2)

The way that the processor calculates the integral is by assumina a step size of 100
milliseconds and calculating the difference between the desired positioned actual
position at each sample. This difference is then multiplied by the step size At and added to
the previous value of the integral. This is an iterative process that could cause the integral
to increase^definitely if the ball were not responding properly. For this reason, a hmkis
placed on the maximum value of the integral. When this limit is reached, maximum torque
will be applied to the motor. H

thic r ^ K
thC Pr°CeSSOr Calculates the ™<i™^ torque needed bv the motor, it applies

^s torque by making use of the UDN-2954 motor driver. This chip, essentially an H-
bndge with four transistors, allows the PIC to use pulse width modulation (PWM) to drive

annTT ^ f ^ " ba± *' posftive ^ ne?ative ^^^ Fortunately, this is
ano her built in function of the PIC16C74. By setting up various control registers related
to this function the PIC can change the duty cycle of one of its output pins h, a single
instruction cycle. The way PWM works is simple. The periodic PWM output drives the
base of a transistor which allows current from the power source to flow through the motor
m the same periodic signal. When this square wave is input into the motor, it possesses a
DC average value as well as components at multiples of its frequency. A DC motor bein2

a low pass filter, these high frequency terms are cut off So, in effect, a +6 V DC value ~
can be created by driving a +12 V square wave at 50% duty cycle

u*-,i, ™e °*f >Put ** the m°t0r driver requires is a Phase »P«t. This is the input
which tefls the driver which way the motor is to be turned. By usina these two inputs
alone, the processor is able to turn the motor at any speed up to its maximum in either
direction^ When the program calculates the required value for the torque, it checks to see
whether the number is positive or negative. This determines whether the Phase gets set or
not. I he program then calculates the magnitude of the required torque and places a

37

multiple of this value in the PWM register. In this way, the PIC is able to successfully
implement state feedback control. A Phase and Enable combination is shown below in
figure 5.8. The Enable pin is active low, so the extremely short duty cycle shown in the
figure will actually cause the motor to turn at a high speed.

+5 V

GND

+5V

Phase

GND

Enable

Figure 5.8. Motor Driving Signals

Most of the communications performed by node 4 are receptions. The only
message that this node transmits is a periodic update of its state data every five passes
throught the control loop, at which point it sends to the PC the present values of position
and velocity of the ball, and angular position and angular velocity of the track.

One of the abilities that was considered when designing the network was that
certain values might need to be obtained at startup that were not initially hardcoded into
the programming of the actual processors. It is for this reason that a serial EEPROM
(electrically erasable programmable read only memory) is attached to four pins of the node
governing motor control. This EEPROM can store up to 256 16-bit values in its memory,
and it will retain these values when power is lost to the network. This is a useful place to
store feedback gains for the processor to use when controlling the motor. It may also be
useful for storing values of trigonometric functions that play a part in nonlinear problems
like this one. The EEPROM can be read in a single interaction cycle. This allows the
programmer to place useful data in the EEPROM ahead of time without worrying about
long delays.

A series of subroutines coded into the processor at node 3 controls their operation.
The connection requires only four wires: a clock pin, chip select, data input, and data
output line. The process for reading from or writing to the EEPROM requires first that
the chip select be turned low and that the proper command is clocked in serially across the
data input line. The EEPROM interprets the command and either waits for more data
over the same line in the case of a write command or places data on the data output line if
a read command is invoked.

38

The use of the EEPROM in the control problem adds a sense of robustness. A
user desiring to change the feedback gains can simply program the EEPROM at his leisure
and replace the existing EEPROM in order to alter the response of the ball. This may be
especially useful in a situation where no PC is present in the loop.

39

6. Conclusions

The research performed thus far has proven the token ring as a legitimate choice of
a protocol for a control network. A network has been created and messages relating to
the control problem are able to pass through it without flaw. The entire control problem
has not yet been completed as there are still problems with the digital state feedback
routine. Stilk enough is working to make several conclusions about the performance of
the token ring protocol for real-time control networks.

The response time noticed as messages are being passed among the nodes is fast
enough for the sample control application. One of the worries when choosing a token ring
network is that as the number of nodes is increased, the time for a message to pass around
the loop increases as well. In the specific application, the messages clearly pass fast
enough to allow the motor-controlling node enough time to perform its intense
mathematical subroutines on updated information, instead of having to use the same
sample on several times.

Even more importantly, each message was able to send its data packet in less than
two passes of the token around the entire loop. The most important advantage of using a
token ring network is that all messages that need to send data will be able to send that data
in under a specified period of time. Under many of the other possible protocols, the
average message time was much quicker, but this gain in speed was at the cost of
determinacy — one could never know exactly when a node would communicate its data.
If two nodes attempted to communicate at the same time, they could temporarily stall the
network. This is not a problem in the token ring network.

The cyclical redundancy checking proved an effective way of stopping errors in the
network. When a faulty message was intentionally sent, the first node that received it
absorbed the faulty message and sent a token instead. The error detection rate
approached 100 % using random flawed data. The only situations in which the CRC
check failed is when the same bit in an even number of characters was altered, but this was
expected and accepted as a limitation of the CRC error-checking protocol. Very little
time passes while a node calculates the CRC h is required to send along with its message.
The benefit of using more advanced error-checking routines that find nearly all errors is
offset by the loss of network speed.

This network of single-chip microcomputers was able to successfully communicate
with a modern personal computer. This allows a user to update data directly using a
medium with which he is familiar. Further, myriad applications are possible now that this
network can interact with a PC using the RS-232 standard.

The token ring protocol used in control networks of tiny microcomputers has
proven very effective in the sample control application. In spite of its failure to complete
the problem in its entirety, the scheme of message passing and error checking performed
flawlessly and efficiently. Several applications now exist in which the use of this protocol
may prove beneficial, and the future will continue to see the rise of such applications. One
vision of the future is shared below:

"Picture your office building early one morning, some years hence. You get in by
sliding your badge through an access system's card reader. Instantly, the lights leading to
your office flicker on. As you push to open the office door, lights and temperature adjust

40

to the settings you picked yesterday. Meanwhile, the process control network in the
manufacturing area sends your computer the latest statistics.

"Abruptly, a fire alarm system warns you of smoke and fire in a section of the
factory floor. It also alerts the local fire department by phone, and your heating and air
conditioning die. The process control network shuts down the manufacturing line, the
access control system lists who is where in the building for the fire department, and the
lighting control network turns on all lights along the routes to the emergency exits. All
this happens painlessly and flawlessly" [3].

This example, while not yet possible, demonstrates the power of the control
network. An effective protocol for single-chip computers will only increase this power.

41

7. References

[1] Reiss, Leszek. Introduction to Local Area Networks with Microcomputer
Experiments. Prentice Hall Inc: Englewood Cliffs, NJ, 1987.

[2] Black, Uyless D. Data Communications arid Distributed Networks.
Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1987.

[3] RajL Reza S. "Smart Networks for Control." IEEE Spectrum. June 1994.

[4] Upender. B.P. and Koopman. P.J. ""Embedded Communication Protocol Options/
Proceedings of the Embedded Systems Conference. San Jose. CA. October 3-5,
1993.

[5] HummeL Robert L. Programmer's Technical Reference: Data and Fax
Communications. Ziff Davis Press: Emeryville, CA, 1993.

[6] Bachiocbi Jeff. "Creating the SMART-MD DC Motor Control for the I:C Bus."
Circuit Cellar Ink, Vol. 62. September 1995.

[7] "PIC16C71: 8-Bit CMOS EPROM Microcontroller with A/D Converter."
Chandler, AZ: Microchip Technology, Inc., 1994.

[8] Gonzalez, Rafael C. and Wintz, Paul. Digital Image Processing. Addison-
Wesley Publishing: Reading, MA, 1987.

[9] Vernon, David. Machine Vision: Automated Visual Inspection and Robot Vision.
Prentice Hall: New York. 1991.

[10] Held, Gilbert. Token Ring Networks. John Wiley and Sons: New York, 1994.

42

Appendix Al

Calculating System Equations

The following MATLAB file calculates the nonlinear equations governing the
ball/beam system using Lagrange's method. It returns three different sets of equations
which may be considered by the user: 1) the full dynamics, allowing slippage and
orthogonal velocity effect, 2) a simplified modeL ignoring the effect of the orthogonal
velocity component, and 3) an even simpler model ignoring supping as well.

!

disc (' -,--<--t^-**^ + + *-i- + + + i- + + + » + 4. + + + + *^. + + + ^J.^^^.<.^_J.^»J.J. i)

dispi'- + + + *. + + + + *, FULL MODEL **---~-t + + ^^_ + + ■)
disp('•"-^-"^ + -~^.~^ + + -^^ + + + ^,.^.^,.^„„_ + ^,.. j

KEi='1/2-M1*(dx*2+(x*dth)'2) + (1/2!-(2/5-Ml*R~2)-(dx/R+dth)"2';
KE2='1/2*(M2-L*2/I2)-dthA2';
KE=symop(KEl,'+',KE2)
PE='-Ml*G-x-sin(ch)'
LAG=symcp(KE,'-',PE)
Fx='-Ex'dx';
Tl=diff(LAG,'dx');

T2=symcp(diff(Tl,•x'),'*','dx');
T3=symop(diff(Tl,'dx'),'*','ddx'};
T4=symop(diff(Tl,'th'),■*•,'dth');
T5 = symop(diff (Tl, 'dth'),'*', 'ddth') ,•
T6=diff(LAG,'x'); '
Tx=symop(T2,'+",T3,'+',T4,'+',T5,'-',T6,'-',Fx)
% collect(Tx,'ddx')
% collect; (Tx, 'ddth')
Fth ='Tm-Eth*dth';
Tl=diff (LAG, 'dth') ,-

T2=symop(di£f(Tl,'x'),'*',,dx');
T3=symop(diff(Tl,'dx'),'*','ddx');
T4=symop(diff (Tl,'th'),'*' , 'dth') ,•
T5 = symop(diff(Tl, 'dth'),'*', 'ddth') ;
T6=diff(LAG, 'th') ;

Tth=symop(T2,'+',T3,'+',T4,'+',T5,'-',T6,'-',Fth)
% collect(Tth,'ddx')
% collect(Tth,'ddth')
[ddx,ddth]=solve(Tx,Tth,'ddx,ddth');

disp('ddx')
for i=l:70:length(ddx)
disp(ddx(i:min(i+69,length(ddx))))

end

dispCddth')
for i=l:70:length(ddth)
disp(ddth(i:min(i+6S,length(ddth))))

end

% return

% Now substitute in some numbers
ddxl=subs(ddx, '9 . 8 0621', 'G') ;

'0.2','Ml');
'0.4 5 ' , 'M2') ;
' 1 . 3 ' , ' L ') ;

'0.01' , 'R' > ;
'0.001 ' , '3x') ;

■ 0.01 ' , 'Bth') ;

ddxl=subs(ddxl,

ddxl=subs(ddxl,

ddxl=subs(ddxl,

ddxl=subs(ddxl,

ddxl=subs(ddxl,

ddxl=subs(ddxl,

ddthi=subs(ddth,

ddthl=subs(ddthl

ddthl=subs(ddthl

ddthl=subs(ddthl

ddthl=subs(ddthl

ddthl=subs(ddthl

ddthl=subs(ddthl

9.80621','G')

' 0.2' , 'Ml') ;

'0.4 5 ' , 'M2') ;

' 1 . 3 ' , ' L') ;

' 0 . 01 ' , ' R ') ;
• 0.001 ' , 'Hx')

• 0.01 ' , 'Bth')

disp('ddxl')
for i=l:70:length(ddxl)
disp(ddxl(i:min(i+69,length(ddxl))))

end

disp('ddthl')
for i = l :70:length(ddthl)
disp(ddthl(i:min(i+69,length(ddthl))))

end

disp (

disp (

disp (

disp (

disp (

disp (

disp (

+ -*-♦- ++ + -!- + -»- + + -*- + +

END FULL MODEL ■')

+ +^.-^ + ^.^. + + + + ^- + + ■>. + + + + ^^■>■ + + -^■ + + + + + ^^■ + + + + + ■>■ + + + + •t■■,■ + -,■ >

+ + + + + + + + -,. + + + SIMPLIFIED MODEL ++++++++++++')

+ -t'-,- + + + + + + + ' <

KEl='l/2*Ml«(dx*2+(x*dth)"2) + (1/2)*(2/5*Ml*RA2)*(dx/R)*2'

KE2='l/2-(M2-LA2/12)*dth*2';

KE=symop(KEl,'+',KE2)

PE='-Ml*G-x*sin(th)'

LAG=symop(KE, '-',PE)

Fx='-Bx*dx';
Tl=diff(LAG,'dx');

T2 = symop(diff(Tl, 'x') , '*

T3=symop(diff(Tl,'dx'),'

T4 = symop(diff(Tl, 'th') , '

T5=symop(diff(Tl,'dth'),

T6=diff(LAG, 'x') ;
Tx=symop(T2,'+',T3,•+',T4,'+',T5,'-',T6,'-',Fx)

% collect(Tx,'ddx')

% collect(Tx,'ddth')

' dx') ,-

,'ddx');

, 'dth') ,-

','ddth')

44

Fch='Tm-Eth*dth';

Tl=diff(LAG,'dth');

T2=symop(diff(Tl,'x'),'*','dx');

T3=symop(diff(Tl,'dx'),•*■,'ddx');
T4=symop(diff (Tl, ' th') . ' * ' , 'dth') ,-

T5=symop(diff(Tl,'dth'),'*','ddth');

T6=diff(LAG,'th');

Tth=symop(T2, '+',T3, ' + ',T4, ■ + ' ,T5, '-' ,T6 ,

% collect(Tth,'ddx')

% collect(Tth,'ddth')

[ddx, ddth] =solve(Tx,Tth, 'ddx, ddth') ,-

',Fth)

disp('ddx')

for i = l :70:length(ddx)

disp (ddx (i:tnin(i + 69,length (ddx))))

end

disp('ddth')

for i = l :70:length(ddth)

disp (ddth (i :tnin (i + 6 9, length (ddth!))

end

% Now substitute in some r.urrbers

ddxl=subs(ddx, S.80621','G')

ddxl=subs(ddxl '0.2','Ml');

ddxl=subs(ddxl '0.4 5 ' , 'M2') ;
ddxl=subs(ddxl ' 1 . 3 ' , ' L ') ;

ddxl=subs(ddxl ' 0 . 0 1 ' , ' R ') ;
ddxl=subs(ddxl '0 .001 ' , 'Ex')

ddxl=subs(ddxl •0.01' , 'Eth')

ddthl=subs(ddth,

ddthl=subs(ddthl

ddthl=subs(ddthl

ddthl=subs(ddthl

ddthl=subs(ddthl

ddthl=subs(ddthl

ddthl=subs(ddthl

9.80621','G')

'0.2','Kl');

'0.4 5 ' , 'M2') ;

' 1 . 3 ' , ' L ') ;

'0.01 ' , 'R') ;

' 0.001' , 'Ex')

'0.01' , 'Eth')

disp('ddxl')

for i=l:70:length(ddxl)

disp(ddxl(i:min(i+69,length(ddxl));
end

disp('ddthl')

for i = l :70:length(ddthl)

disp(ddthl(i:min(i+69,length(ddthl]
end

disp('++')

disp('++++++++++ END SIMPLIFIED MODEL ++++++++++')

disü(' + + + + + + + + + + + + + + ++ + + + + + + + + + + + + J-J- + + + + + + + + -^ + + + +')

45

Appendix A2
Integrator State Feedback Design

The following MATLAB code acts on the linearized state-space matrix and
calculates five gains (for the fifth order system) to place the poles in the user specified
location.

% Linearization and Simulation of ball/beam dynamics

Ml=0.113;

M2 = 0.4 5 5 ;

Bx=0.01;

3th=0.01;

G=9.80621;

L=1.0;

x01=0; x02=.5; JTn itial and final ball position

%'dse final position in forming [A,B,C,D]
x0 = 0;

DEN=Ml*xO*2+M2*L/2/2;

Az=[0 1 0 0; 0 -5/7*Bx/Ml 5/7*G 0; 0 0 0 1; Ml'G/DEN 0 0 -3th<'DEN]
Bz=[0 0 0 1/DEN]•;
Cz=[1 0 0 0] ;

Dz = 0;

p=[-l+.7*j -1-.7-J -1.1+.7-J -l.l-.7*j -2] ,-desired poles

cei=conv([i -p(l)],[i -p(2)]);

ce2=conv([i -p(3)],[l -p(4)]);

cel=conv(eel,ce2);

ce=conv(cel,[l -p(5)]);

ce=ce(2:6);

Kbar=willt(Az,Bz,Cz,ce);
K=-Kbar(5)

%Kz=place(Az,Bz,p);

Kz=Kbar(1:4);
Kl=Kz(l)

K2=Kz(2)

K3=Kz(3)

K4=Kz(4)

Acl=Az-Bz*Kz;

t=0:.01:10;

[num,den]=ss2tf(Acl,Bz,Cz,Dz);
num=K*num;

den = conv(den, [l 0]);

[numcl.dencl]=cloop(num,den);

46
step(numcl,dene1,t);
[Ai,Ei,Ci,Di]=tf2ss(numel,dencl);

%U=ones(size(t));
%U=x02'U;
XXO=[xOl 0 0 0]';
%return;

%[YY,XX]=lsim(Acl,Bz,Cz,Dz,U,t,XXO);
%[YY.XX]=lsim(Ai,Bi,Ci,Di,U,t,XXO);

%plot (t, YY) ; grid; figure (gef) ,-

%Tm=-XX»Kz'-Ml-G*x02; %Motor torque to apply
%tt=t';

47

Appendix A3

Additive Clock Operations

The PIC processor has a program counter that increments after each instruction.
The new value of the counter will be the address in program memory of the next command
that it executes. On a GOTO or CALL statement (the only two jumping instructions), the
processor loads the value of the address that is jumped to into the program counter before
executing the jump instruction. This is how it knows where to go to execute the next
instruction. It is also possible to simulate a jump by adding a number direct]}' to the
program counter. The program counter increments after it executes the instruction on its
address line, so if the instruction adds a number to it, it increments this by one more.
Looking at the following, the first and second lines save the third character of the message
(the command byte) into a register called Command. The program counter then
increments by one to go to the next step. In this next step, the PIC adds the value just
stored in the command register the present value of its program counter and then
increments the value of the program counter by one. For simplicity, assume that the
message was the same as the example message earlier and that the program counter has
the value of the line numbers in the code below. The program counter currently has the
value 2. When the value of the Command register (a decimal 3) is added to it, it then
contains the value 5. After it executes this addition instruction, it increments itself by one
expecting to go to the next line. Actually, it contains the value 6, so it jumps to that line.
When it reaches line 6. it executes the instruction there and jumps to the section of code
labeled Cmd3. In this way, it is able to use the value of the third byte of the message to
execute a certain command.

;move third byte of message into W
;move W reg into Commang reg
;add value of Command to counter

1 movf Msg+3,w
2 movwf Command
3 addwf PCL,F
4 goto Send Token
5 goto Cmdl
6 goto Cmd2
7 aoto Cmd3

48

Appendix A4

Node 2 Source Code

The following code is the actual machine language code that is programmed into
node 2 of the network, the node responsible for communicating with the PC as well as the
other PIC processors.

"NODE2.SRC"

DEVICE PIC16C84,KS _(

;Registe rs
ORG OCh

TmpW DS 1
TmpSTAT DS 1
TmpINT DS 1
Tmp DS 1
Tmpl DS 1
Tmp2 DS 2
CNT DS 2
i DS 1
CRC1 DS 1
CornStat DS 1
ComReg DS 1
ComCnc DS 1
DelCnt DS 1
ADDR DS 2
PosD DS 1
Pos DS 1
Fig DS 1
Disp DS 3
DCnt DS 1
Msg DS 1

,-Numeric constants
F = 1
LSB = 0
MSB = 7
RCF = CornStat 0
TXF = Comstat 1
CRCErr = ComScac 2
FERR = CornStat 3
OERR = ComStat 4
DTS = CornStat 5
toPC = CornStat 6
EOMchr equ I __ I

IntVEC equ 10110000b
RSI equ Fig.7 ;
tmout equ Fig.6

various flag bits
; digits to display (up to 6, ECD)

; End-of-message character
; GIE=1, RTIE=1, INTE=1

temporary storage for RS status

49
PHAlasc equ Fig 5
mseclOO ecru Fig 4
ch_pcs equ Fig 3
ch_posd equ Fig 2
first equ Fig 1

last value of 'PKA' of input shaft encoder
1=100 msec elapsed
ball position changed
desired position changed
»first character received

,-Pin assignments
RX equ PORTB.0
TX1 equ PORTA.3
TX eou PORTA.2

; Signals to the 40x2 LCD display (data is sent on PORTB.6
RS equ PORTB. 1
RW equ PORTB.2
CLK equ PORTA.4

; Signals from input shaft encoder (inputs)

Code Soace

PORTB.3)

FKA equ PORTA.O
PHB equ PORTA.1

ORG 0 0h
goto START

ORG 04 h

goto ISR

LUT1 addwf 2, F
retw 'POS(d) ', EOMchr

LUT2 addwf 2, F
retw 'POS ', EOMchr

LUT3 addwf 2, F
retw 'OK', EOMchr

ISR movwf TmpW

swapf STATUS,W
movwf TmpSTAT

btf sc INTF
call Receive
btfsc RTIF
call Timer

ENDISR

swapf TmpSTAT,W
movwf STATUS
swapf TmpW,F
swapf TmpW,W ;]

retfie

ISR Space

,-Save contents of W register

Save contents of STATUS reaister

Put contents of STATUS register back

,-Put contents of W register back

"Timer" handles the 100 microsecond timer interrupts

Timer bcf
clrf

RTIF
RTCC

50

Shaft btf SC PHAlast

goto :L0
btfss PHA
goto :L0
bsf ch_posd

bsf DTS
btfss PHB
goto : inc

:dec decf PosD, F

movlw 156
subwf PosD,W

btfss Z
goto :L1
movlw 157
rnovwf PosD

goto :L1
: inc incf POSD, F

movlw 100
subwf PosD,W

btfss Z
goto :L1
movlw 99
rnovwf PosD

: Ll bsf tmout

:L0 bsf PHAlast

btfss PKA
bcf PHAlast

; bsf tmout

.•call PosD_Chg

return

START bsf RPO
clrf INTCON disab
movlw 03h
rnovwf 05h TR ISA

movlw 01h 81h
rnovwf 06h TRISE
movlw 10001000b
rnovwf OPTION Inter

bcf RPO
movlw 2
rnovwf ADDR

clrf PosD
clrf Pos
clrf Flg

bsf ch_pos

bsf ch_posd

bcf RCF
bsf TX1

InterruDt on fallina edge of B0

bsf TX
,-movlw 5

,-movwf testcnt

51

LCDprep

call LCD_init
call LCD_clear

PrepO movlw Msg
movwf FSR

Prepl movlw INTVEC
movwf INTCON
;goto print_ok

MAIN btfss tmout
goto :M1
bcf tmout
call message

:Mi bcfss RCF
goto MAIN

,-goto loop
bcf RCF
,-goco print_OK
movf ComReg,W
movwf 0
,-goto print_OK
sublw EOMchr
btfsc z
goto Process
incf FSR.F
movf FSR,W
sublw 2Fh
btfsc C
goto Prepl
;goto print_ok
,-goto PrepO

;Begin processing message
Process

;goto print_ok
bsf toPC
movlw Msg
movwf FSR

to FSR

movf 0, W
btfsc Z
goto New Info
sublw ' W
btfsc z
goto CPU
call CRC
btfss Z

,-move address of Msg register to FSR

;Enable interrupts (GIE RTIE and INTE)

,-wait for receipt of byte
;Main part of Drocrärr. her;

:move byte into current Msa reaist;

rprepare for next byte
;see if addressing beyond memory

;reenable interrupts

:end of buffer, start over

rmove address of first byte (address)

read address
token received
check to see if data needs to be sent

52

yet

PO

noD
,-goto print_ok

movlw Msg
movwf FSR
movf ADDR,W

bcfsc Z

movf 0,W
movwf ADDR

movf 0,W
subwf ADDR.W

btf ss Z
goto RetranstoPC

,-call CRC
,-goto CRC
movlw Msg+1

movwf FSR
movf o,w
movwf ADDR-1

;check to see if node is addressable

;first byte is defining address

,-message not for this node

;check CRC
;"From" address

;move address of sending byte in
;ADDR+1 recister

■ Exe^~ ute instruct ion specifie

Comma nd
ir.cf FSR,F

movf 0,W
addwf PCL, F

CmdO goto New_Info

Cmdi goto Chg_PosD

Cnd2 goto Chg_Pos

Cmd3 goto New_Infc

Cmd4 goto New_Info

CmdE goto New_Info

Cmd6 goto New_Info

Cmd7 goto New_Info

CmdS goto New_Info

Cmd9 goto New_Info

CmdA goto New_Info

CmdB goto New_Info

CmdC goto New_Info

CmdD goto New_Info

CmdE goto New_Info

CmdF goto New_Info

CPU bcf toPC

call CRC
btf ss Z
goto Send_Token

,-goto print_ok

movlw Msg + 1

movwf FSR
movf 0,W
sublw ' P'

btfss Z

by message

reserved for future use

53
goto New_Info

info/pass token

PI incf FSR,F
movf o,w
btf sc z
goto New_Info
movf ADDR,W
btf sc Z
movf o,w
movwf ADDR
movf 0,W
subwf ADDR,W
btfss Z
;goto print_OK
goto Retrans
;call CRC
movlw Msg+3
movwf FSR
movf 0, W
movwf ADDR+1

ADDR+1 register

goto Command

;message not valid; check for new

read address

token received

check to see if data needs to be sent

rcheck to see if node is addressable

;first byte is defining address

message not for this node,- retransmit
check CRC

"From" address

,-move address of sendina■ bvte into

,-Cmdl - update the desired position of the ball
Chg_PosD

movf Msg+5,W
movwf PosD

bsf ch_posd
;bsf DTS

,-goto New_Info

call message

goto PosD_Chg

,-goto Send_Token

;Cmd2 - update the position of the ball
Chg_Pos

movf Msg+3,W

movwf Pos

bsf ch_pos'

goto New_Info

;Check to see if node has data to be sent; if so, send that data. If
not, pass token

New_Info

movf Msg,W

btfsc DTS ,-does new data need to be sent?
goto PosD Char

;Transmit token to next node in sequence
Send_Token

clrf Msg

movlw EOMchr

movwf Msg+1

btfss toPC

54

goto
. aoto

Send
SendtoPC

/Change desired position of ball
POSD_ Chgr

bcf DTS
movlw Msg
movwf FSR
movlw Olh
,-movlw 04h
movwf 0
incf FSR,F
movlw 02h
movwf 0
incf FSR,F
movlw 02h
movwf 0
incf FSR, F
movf PosD.W
movwf 0
incf FSR, F
mcvlw EOMchr
movwf 0
call CRCCaic
btf ss toPC
goto Send
goto SendtoPC

PosD_ _Chg
bcf DTS
movlw Msg
movwf FSR
movlw 04h
movwf 0
incf FSR, F
movlw 02h
movwf 0
incf FSR,F
movlw 02h
movwf 0
incf FSR.F
movf PosD,W
movwf 0
incf FSR, F
movlw EOMchr
movwf 0
call CRCCaic
btfss toPC
goto Send
aoto SendtoPC

:request from PC to change PosD

;message goes to node 4

,-message is from mode 2

;execute command 2

■recuest from PC to cnar

;messaoe coes to r.oae

,-messaae is from mode 2

■execute command 2

-'-•<= D^c1^

,-Transmit data in Msg+n to Node 3 until End of Message byte is reached
,• Strip WP from message
Retrans

55

movlw Msg
movwf FSR

:R0 incf FSR,F

incf FSR,F
movf 0,W
decf FSR,F

decf FSR, F
movwf 0
sublw EOMchr

btf sc Z
goto :R1
incf FSR,F

goto :R0
:R1 call CRCCalc

goto Send

.-Transmit data in Msg+n to Node 1 until End of Message byte is reached

RetranstoPC

goto SendtoPC

; "Se nd" retrar smits back command string for checking or passing on to
next machine

Send mov 1 w Msg ; Address of "Msg" into w
movwf FSR ,- Load FSR with Command Byte

Sendl movf 0, W ,- Read command
movwf ComReg
call XMIT
movf 0, W ,- Read command
sublw EOMchr ; check for end-of-message byte
btfsc Z
goto PrepO
incf FSR, F ; increment FSR register
goto Sendl

,- "SendtoPC" re transmits back command string for checking or passing on
to next machine

Sendt oPC
movlw Msg ; Address of "Msg" into w
movwf FSR ; Load FSR with Command Byte

StPl movf 0, W ; Read command
movwf ComReg

call XMITtoPC
movf 0, W ; Read command
sublw EOMchr ; check for end-of-message byte
btfsc Z
goto PrepO

incf FSR, F ; increment FSR register

goto StPl

'

LCD_init

bcf RSI ; Send instructions

call D41
call D41
call D41
call D41
movlw 00000011b
call Send4
call D41
movlw 00000011b
call Send4

movlw 00000010b
call Send4
movlw 00101000b

56

Delay at least 15 ms (4x4.1 is OK)

send lower 4 bits of [W]

; Function Set: Sets to 4-bit'

; Function Set: 2-line display and
5x7 dot character font

call Send8
movlw 00001110b ,- Display ON/OFF Control:
movlw 00001100b ; Display ON/OFF Control:
call SendS
movlw 00000110b ; Entry Mode Set: Increment address

by 1 and shift cursor to right

; Clear display and place cursor or.

; Preoare to Send data

Send instructions
Clear display

Send data

Send instructions
Return Cursor to Home Position

Send data

LCD_white_space ; write ' ' characters (total number
; is [W])

; Send data
:L0 movlw 20h ; ASCII for 'SDace'

call SendS
movlw 00000001b

left
call Sends
bsf RSI
return

LCD clear
bcf RSI
movlw Olh
call Sends
bsf RSI
return

LCD home
bcf RSI
movlw 02h
call Sends
bsf RSI
return

movwf TmD
bsf RSI
movlw 20h
call Send8
decfsz Tmp,
goto :L0
return

; "GotoXY" places the cursor at character specified in [W] register
GotoXY

iorlw 80h ; command to set DD RAM address

bcf
call
bsf
return

57
RSI
Sends
RSI

; Send instructions

; Send data

d8n"LrndS 81;\d?Ca (ln 2 4"bit nibbleS °Ut P0™ bits 6-3, Send8 movwf
movwf

bcf
rrf
movwf
bcf
bcf
btf sc
bsf
bsf
nop
nop

movf
Send4 mcvwf

bcf
swapf
rrf
movwf
bcf
bcf
btf sc
bsf
bsf
nop
nop
bcf

Tmp2+i
Tmp2

CLK
Tmp2, W
PORTS
RW
RS
RSI
RS
CLK

CLK

Tmp2+i, W
Tmp2

CLK
Tmp2, F
Tmp2, W
P0RT3
RW
RS
RSI
RS
CLK

Temporary storage
Temporary storage

place upper 4 bits of data in [w]
Send upper 4 bits of data

clock data into LCD

Temporary storage

place lower 4 bits of data in [w]
Send lower 4 bits of data

CLK clock data into LCD

; Make PORT3.6 input to watch BUSY flaq
bsf RPO
bsf 06h,6
bcf Rpo

; Set/Reset bits for checking BUSY condition

:L3

bcf
bsf

bsf
nop
nop
btfss
goto
bcf
bsf
bcf

RS
RW

CLK

PORTB,
:L4
CLK
CLK
CLK

clock in upper 4 bits

check for busy
not busy

still busy, so clock in lower 4 bits
and discard

goto :L3
:L4 bcf CLK

bsf CLK ; clock in lower 4 bits and dis
bcf CLK

bcf RW
; Return PORTB.6 to output function

bsf RPO
bcf 06h,6
bcf RPO
return

; Delay 4.1 milliseconds (w/ 11.0592 MHz crystal)
D41 movlw 15

movwf CNT
clrf CNT+1

:L0 decfsz CNT+1, F
goto :L0
decfsz CNT, F
goto :L0
return

,- Delay long time
D4 10

clrf CNT
clrf CNT+1

:L0 decfsz CNT+1, F
goto :L0
decfsz CNT, F
goto :L0
return

; "Digit" ser ds one digit out to the display.
Digit bsf RSI ; Send data

andlw OFh
icrlw 30h
call Sends
return

; "message" sends the standard data to LCD display
message

,-print "POS(d)= (+/-).xx"
:Lla btfss ch_posd

goto :L2a
bcf ch_posd
movlw 15
call GotoXY
clrf i

:L1 movf i, W
call LUT1
movwf Tmpl ; temporary storage
sublw EOMchr

58

59

btf sc Z
goto :N1
movf Tmpl, W

call SendS

incf i, F

goto :L1
Nl btf sc PosD,MSB

goto :NEG

movlw 1 1

movf PosD,F

btf ss Z
movlw ' + '

call SendS

movlw i I

call SendB

movf PosD,W

rnovwf CNT
clrf CNT+1

call to_dec8

goto :Nla

NSG mov 1 w t _ i

call SendS
movlw ■ . ■

call Send8
movf PosD,W

sublw 0
rnovwf CNT
clrf CNT-1

call to_dec8

Nla swapf Disp, W
call Digit
movf Disp, W

call Digit

;print BPOS=(+/-)-xx"

L2a btf ss

return

ch_pos

bcf ch_pos
movlw 40h + 15

call GotoXY

clrf i
L2 movf i, W

call LUT2
rnovwf Tmpl

sublw EOMchr

btfsc Z
goto :N2
movf Tmpl, W

call SendS

incf i, F
goto :L2

N2 btfsc Pos,MSB

goto :NEG2

; temporary storage

60

movlw i i

movf Pos, F
bcfss Z
movlw ' + '

call Send8
movlw i i

call Send8
movf Pos, W
movwf CNT
clrf CNT+1
call to_dec8
goto :N2a

NEG2 movlw I _ I

call Send8
movlw I 1

call Sends
movf Pos.w
sublw 0
movwf CNT
clrf CNT+1
call to_decS

N2a swapf Disp, w
call Digit
movf Disp, W
call Digit
return

END LCD Routines

"tc_dec8" is 100's digits and below for
single-byte counts in [CNT] only (but ensure [CNT+1]=0.

[Tmp2+1:Tmp2]

,- 100's digits and lower
,- clear proper display location

; Reg isters : [CNT+1:CNT],

to de c8
movlw OFOh
andwf DisD+1
clrf Disp

:E2a movf CNT, W
movwf Tmp2
movf CNT+1, W
movwf Tmp2+1
movlw 64h
subwf CNT, F
btfsc C
goto :E2b
movlw 1
subwf CNT+1, F
btf ss C
goto :E1

:E2b incf Disp+1, F
goto :E2a

:E1 movf Tmp2, W
movwf CNT

save CODV for later restoration

100's diait

10's diait

restore last value

61

:Ela movf CNT, W
movwf Tmp2
movlw 10
subwf CNT, F
btf ss C
goto :E0
movlw 10h
addwf Disp, F
goto :Ela

:E0 movf Tmp2, W
addwf Disp, F
return

save copy for later restoration

10's digit

1's digit

restore last value

Serial Communications routines
 - XMIT Subroutine
This subroutine transmits one byte of data in ComReg register at 9600

bps .
;The transmit line is FORTE, bit 1

:X0

bcf
movf
movwf
clrf
movlw
movwf
bcf
btf ss
bcf
btfsc
bsf
call
rrf
decfsz
goto
bsf
.-call
call
movf
movwf
bsf
return

TXF
INTCON.W
Tmplnt
INTCON
9
ComCnt
C
C
TX
C
TX
Delay
ComReg, F
ComCnt
:X0
TX
D41
Delay
Tmplnt,w
INTCON
TXF

;byte not transmitter yet
;store enterino value of INTCON

;temporarily disable all interrupts
;start bit + 8 data bits coming

;start bit in carry
,-test carrv data

.-delay for 1/9600 s
;shift in next bit of data

,-send stop bit

,-delay for 1/9600 s

;restore interrupt values
;indicate valid transmission of byte

. XMITtoPC Subroutine
,-This subroutine transmits one byte of data in ComReg register at 9600

bps.
,-The transmit line is PORTB, bit 1

XMITtoPC
bcf
movf
movwf

TXF
INTCON,W
Tmplnt

;byte not transmitted yet
;store entering value of INTCON

62

:X0

clrf
movlw
movwf
bcf
bcfss
bcf
btfsc
bsf
call
rrf
decfsz
goto
bsf
call
movf
movwf
bsf
return

INTCON
9
ComCnt
C
C
TX1
C
TX1
Delay
ComReg,F
ComCnt
:X0
TX1
Delay
Tmplnt,w
INTCON
TXF

;temporarily disable all interrupts
.•start bit + 8 data bits coming

; start bit in carry
,-test carry data

.-delay for 1/9600 s
;shift in next bit of data

;send stop bit
;delay for 1/9600 s

;restore interrupt values
; indicate valid transmission of byte

; "CRCCalc" calc
CRCCalc

mcviw
movwf
clrf

:L0 movf
subiw
btfsc
cote
movf
addwf
incf
goto

:L1 movf
subiw
movwf
movwf
incf
movlw
movwf
return

ulates CRC and adds it tc message

Msg
FSR
CRC1
0, W
EOMchr
Z
:L1
0, W
CRC1, F
FSR, F
:L0
CRC1.W
0
CRC1
0
FSR, F
EOMchr
0

Address of "Msg" into W
Load FSR with Command Eyte
CRC check holder
Read command
check for end-of-message byte

ail bytes read, check if CRC is zero
Read command

next command bvte

; "CRC" checks CRC at end of message
CRC

:L0

movlw Msg
movwf FSR
clrf CRC1
movf 0, W
subiw EOMchr
btfsc z
goto :L1
movf 0, w
addwf CRC1, F
incf FSR, F

Address of "Msg" into W
Load FSR with Command Byte
CRC check holder
Read command
check for end-of-message byte

all bytes read, check if CRC is zero
Read command

63

:L1
goto
movf
;btfss
;goto
;goto
;goto
return

:L0
CRC1, F
2
print_ok
Send_Token
PO

next command byte

CRC failed, ignore message
CRC OK, continue processing

Receive subroutine
Receive one byte of data at 9600 bps and store it in ComReg register.
This routine is called by the ISR when the INTF flag is set.
Uses PORT B, bit 0 (interrupt pin)

Receive
bcf RCF
movlw 8
movwf ComCnt
call HDelay
btf sc RX
goto RDone

:R0 call Delay
bsf portb, 7
btf ss RX
bcf C
btf sc RX
bsf C
rrf ComReg
bcf portb, 7
decfsz ComCnt,F
goto :R0
call HDelay
bsf RCF

RDone bcf INTF
;decfsz testcnt,F
return
bsf ch_pos
movf ComReg,W
movwf Pos
call message
goto loop

,-delays are set for 9600 bai

Delay movlw 45
movwf DelCnt

:D0 decfsz DelCnt
goto :D0

Hdelay
movlw 45
movwf DelCnt

:Dl decfsz DelCnt,F
goto :D1
return

;byte not received yet

:delay for half of time
rcheck again for start bit
;exit if not proper start bit
■delay until midpoint of next bit

;delay until start of stop bit
: indicate valid reception of byte

64

print _0K
nop
call LCD_clea
clrf i

:L2 movf i, W
call LUT3
movwf Tmpl
sublw EOMchr
btfsc Z
goto loop
movf Tmpl, W
call SendS
incf i, F
goto :L2

disp_ message
nop
btf ss first
return
call LCD_clea
movlw Msg
movwf FSR

:L2 movf 0, W
sublw EOMchr
btfsc Z
goto loop
movf 0, W
movwf CNT
clrf CNT- 1
call to_dec8
swapf Disp, W
call Digit
movf Disp, W
call Digit
movlw I r

call SendS
incf FSR, F
aoto :L2

temporary storage

65

Appendix A5

Node 3 Source Code

The following code is the actual machine language code that is programmed into
node 3 of the network, the node responsible for monitoring camera output and
communicatine this information with the motor-controlling node.

"NODE3.SRC"

DEVICE FIC16C74,HS OSC.WDT OFF.PWRT OFF,PROTECT OFF

;Re: .sters

ORG 2 Oh
Trr.pW DS i

TmpSTAT DS 1
Tmplnt DS 1

J.

CRC1 DS 1
ComStat DS 1
ComReg DS 1
ComCr.r DS 1
DelCnt DS 1
CNT DS 2
ADDR DS 2
?OS DS 1
Vel DS 1
RowCnt DS 1
lent DS 1
Msg DS 1

,-Numeric constants
F = 1
LSB = 0
MSB = 7
Row = 140
;RCF = ComStat 0
TXF = Comstat 1
CRCErr = ComStat 2
DTS = ComStat 3
SIP = ComStat 4
EOMchr = i r

INTVEC = 11001000b
RTCC = TMR0
RTIF = T0IF

,-Pin assi gnments

End-of-message character

66
Horiz equ PORTB.0
Verc equ PORTE.4
CompOut equ PORTE.1
RCF equ PORTB.2

ORG OOh
goto START

ORG 04h
ISR movwf TmpW

swapf STATUS,W
movwf TmpSTAT

btfsc RBIF
call Vertlnt
bcfsc INTF
call Horlnt
bcfsc RCIF
call RCInt

ENDISR

swapf TmpSTAT,W
movwf STATUS
swapf TmpW,F
swapf TmpW,W
reefie

RCInt ;btfsc FERR
,-goto Send_Token
;gotC loop
;bcfsc OERR
,-goto Send_Token
,-gctc loop
movf RCREG,W

register
movwf 0
sublw EOMchr
btfsc Z
bsf RCF
incf FSR, F
movf 0, W
;movlw 10101010b
;movwf PORTD
return

Horlnt

bef INTF
decfsz RowCnt
return
bsf RP0
movlw 01000001b
movwf OPTION
bef RP0
movf Pos, W

Test rar framina erro:

Test for overrun errc:

Recover data bvte and sto: it ir. a

Clear interrupt flag.
If not desired interrupt, go back
and wait for next row.

;Change prescaler to WDT ;1:4 on RTCC.

,-Age position variable

67
movwr Pos + 1
clrf RTCC

:H1 btfsc CompOut
goto :K2
movf RTCC,W
sublw 70
btfsc C
goto :H1
movf Pos+1,W
movwf Pos
goto :H3

:H2 movf RTCCW
bsf PORTE.7
movwf Pos
movlw 35
subwf Pos, F
comf Pos, F
incf Pos, F

:H3 movlw 01000100b
bsf RPO
movwf OPTION
bcf RPO
bcf INTE
return

VertInt

movlw 96
movwf RTCC
bcf RTIF
bcf PORTS.7

:V1 btfSC RTIF
goto :V1
bsf INTE
bsf RPO
mov 1 w 01000001b
movwf OPTION
bcf RPO
bcf RBIF
bcf INTF
return

; TART

clrf INTCON
bsf RPO
movlw 01000100b
movwf OPTION
movlw 01110011b
movwf TRISB
movlw 00h
clrf TRISA
movlw 10000000b
movwf TRISC
clrf TRISD
clrf TRISE

;to use to find velocity.

;Test the comparator output

;ball not found

;use last value of position for ball

;Move the value of the timer into a

register for storing the Dosition.

; Change prescaler back to 1:32

■Disable horizontal interrupt

Wait for 5089-50S2 clock pulses

;Enable horizontal interruDt.

Clear interrupt flag.
Clear flag from unwanted hor. syncs
Return and wait for the hor. syncs

Interrupt on rising edge of RB.0
and set prescaler to 1:32 on RTCC.
Use pins RB.0,1,4 as input

68

movlw 00100000b
movwf PIE1
bcf RP0
call RS232
movlw 10101010b
movwf PORTD
clrf Pos
clrf Vel
movlw Row
movwf RowCnt
movlw 3
movwf ADDR
bsf CREN

,-Set initial position to zero
;Set initial velocity to zero

PreoO
movlw Msg
movwf FSR
movlw INTVEC
movwf INTCON
bcf RCF
,-goto Send_ _Token

MAIN movf RowCnt,F
nop
btf sc Z
nop
call VELCALC
btf ss RCF
goto MAIN

;Begin prcessing message
Process

,-goto loop
mcvlw Msg
movwf FSR
movf 0,W
btf sc Z
goto New_lnfc
call CRC
btfss Z
goto loop
movlw Msg
movwf FSR
movf ADDR,W
btfsc z
movf o,w
movwf ADDR
movf 0,W
subwf ADDR,W
btfss Z
;goto loop
goto Retrans
,-goto CRC

P0 incf FSR, F

If position was just found u.e.-
right row was just completed
and therefore RowCnt is now zero)
update the velocity of the
ball.

move address of
read address
token received
check to see if data

st bvte tc

to be

check to see if node is addressable
first byte is defining address

message not for this node
check CRC
move next byte into FSR register

69
movr
movwf

0, W
ADDR+l ;move address of sending byte into

;ADDR+l register

; Exec ute instruction specified by messaqe
Command

incf FSR, F
movf 0, w
addwf PCL

CmdO goto New_Info
Cmdl goto New_Info
Cnd2 goto New_Info
Cmd3 goto New_Info ,-reserv
Cmd4 goto New_Info
Cmd5 goto New Info
Cmd6 goto New Info
Cmd7 goto New Info
Cmd8 goto New Info
CmdS goto New Info
CmdA goto New Info
CmdE goto New Info
CmdC goto New Info
CmdD goto New Info
Crn^ " goto New Info
CmdF goto New Info

(none should come!

;Check to see if node has data to be sent; if so, send that data. If
not, pass token
New_lnfo

movf Msg.w

btfsc DTS ,-does new data need to be sent?
goto Update
goto Send Token

;Update the linear posi
Update

bcf DTS
movlw Msg
movwf FSR
movlw 4
movwf 0
incf FSR, F
movlw 3
movwf 0
incf FSR, F
movlw 1
movwf 0
incf FSR, F
movf Pos, W
movwf 0
incf FSR,F
movf Vel,W
movwf 0
incf FSR,F

ion and velocity of the ball

70

movlw EOMchr
movwf 0
call CRCCalc
aoco Retrans

,-Transmit token to next node in sequence
Send_Token

clrf Msg
movlw EOMchr
movwf Msg+1
goto Retrans

,-Transmit data in Msg+n to Node 3 until End of Message byte is reached
Retrans

goto Send
,-goto PrepO

,- "CRCCalc" calculates CRC and adds it to message
CRCCalc

movlw Msg
mcvwf FSR
clrf CRC1

:L0 movf 0, w
subiw EOMchr
btfsc Z
goto :L1
movf 0, W
addwf CRC1, F
incf FSR, F
goto :L0

. T_,1 movf CRC1.W
sublw 0
movwf CRC1
movwf 0
incf FSR, F
movlw EOMchr
movwf 0
return

; " CR C" checks CRC at end of messac
CRC mcvlw Msg

movwf FSR
clrf CRC1

:L0 movf 0, w
sublw EOMchr
btfsc Z
goto :L1 '
movf 0, W •
addwf CRC1, F
incf FSR, F
goto :L0 *

:L1 movf
return

CRC1, F

Address cf "Msg" inte W
Load FSR with Command Byte
CRC check holder
Read command
check fcr end-of-message byte

all bytes read, check if CRC is zer;
Read command

next command byte

Address cf "Msg" inte W
Load FSR with Command Byte
CRC check holder
Read command
check for end-of-message byte

all bytes read, check if CRC is zero
Read command

next command byte

71

; "Send" retransmits back command string for checking or passing on to
next machine

;store entering value of INTCON Send movf
movwf
clrf
bsf
movlw
movwf

SO movf
movwf
bcf
bsf
bsf
bcf

:X0 btfss
goto

XMIT movf
movwf
movf
sublw
btf sc
goto

:S0a incf
goto

:S1 bsf
:Sla btfss

goto
bcf
bcf
bsf
movf
movwf
aoto

INTCON,W
Tmplnt
INTCON
SIP
Msg
FSR
0, w
ComReg
CREN
RPO
TXEN
RPO
TXIF
:X0
ComReg,w
TXRE3
0, W
EOMchr
2
:Si
FSR, F
SO
R?0
TRMT
:Sla
T>:EN

RPO
CREN
Tmplnt,W
INTCON
PreDO

Address of "Msg" into W
Load FSR with Command Byte
Read command

,-Disable reception

,-Wait until transmit buffer is clear

Read command
check for end-of-messaae cvz-:

increment FSR realster

;restore interrupt values

RS2 3 2 bsf
movlw
movwf
movlw
movwf
bcf
movlw
movwf
return

RPO
00100000b
TXSTA
32
SPBRG
RPO
10000000b
RCSTA

:Setup transmit

:9600 baud using 20 MHz crystal

: Enable asynchronous serial port

. DELAY subroutine
:delays are set for 9600 baud using 20 MHz crystal

Delay movlw
movwf

82
DelCnt

72

:D0 decfsz DelCnt

goto :D0
Hdelc 2y

movlw 82
movwf DelCnt

:D1 decfsz DelCnt,F

goto :D1
return

loop clrf INTCON

movf Msg+1,W

addlw 32
movwf PORTD

movlw 51
movwf lent

:11 call D410

decfsz lent

goto :11
;bsf CREN

aotc lOOD

Delav 4.1 milliseconds (w/ 11.0592 MHz crystal)
D4 1 movlw 15

movwf CNT
clrf CNT+1

:L0 decfsz CNTV1

goto :L0
decfsz CNT,

goto :L0
return

; De] .av lona ti me
D4 10

clrf CNT
clrf CNT-1

:L0 decfsz CNT^l
goto :L0
decfsz CNT,

goto :L0

VELCALC
movf Pos + 1,W
subwf Pos, W
movwf Vel
movlw Row
nop
movwf RowCnt
movf Pos, W

movwf PORTD

bsf DTS
return

Subtract the old position from new
and store the result in
the Vel register.
Get the correct row back in the
RowCnt register in preparation for
next vertical sync.

73

Appendix A6

Node 4 Source Code

The following code is the actual machine language code that is programmed into
node 4 of the network, the node responsible for controlling the motor which turms the
beam.

"NODE4.SRC"

DEVICE PIC16C74.HS OSC.WDT OFF.PWRT OFF,PROTECT OFF

ORG 20h
EECONTROL DS 1
EEADDR DS 1
EEDATAK DS 1
EEDATAL DS 1

EEOP DS 1
EECNT DS 1
TmpW DS 1
TmpSTAT DS 1
K DS 5
Tmp DS 3
Tmpl DS 1
DelCnc DS 1
ACB DS 3
ACC DS 1
ComStat DS 1
ComReq DS 1
ADDR DS 2
PosE DS 2
PosD DS 1
Pos. DS 1
PosOld DS 1
Vel DS 1
Ang DS 1
AngVel DS 1
KX1 DS 2
KX2 DS 2
KX3 DS 2
KX4 DS 2
KX DS 2
SIGN DS 1
CRC1 DS 1
CNT DS 2
i DS 1
Eint DS 2
TmpInt DS 1
Msg DS 1

74

,-Numeric constants

F

LSB

MSB

RCF

TXF

CRCErr

DTS

SIP
EOMchr

,-Pin assignments

,-Shaft encoder related pins

Aout equ PORTE.0

Eout ecu PORTE.5

1

0

7

ComStat.0

Comstat.1

ComStat.2

ComStat. 3

ComStat.4

;(input)

;(incut)

,-Motor controller-related pins

Phase eau PORTE. 1 ,- (cutout!

,-EEPRCM-related pins
CS equ PORTA.C
CLK equ FORTA.l
DI equ PORTA.2

DO ecru PORTA.3

;(Output)

(cutput)

(output)

(incut)

ORG 0 0h

goto START

ORG 04h
ISR movwf TmpW

swaDi STATUS,W
movwf TmpSTAT

btfss RCIF

call RCINT

btf sc INTF

call PosUcdate

btf sc TOIF

call VelUcdate

ENDISR

swapf TmpSTAT,W

movwf STATUS

swapf TmpW,F

swapf TmpW,W

retfie

RCINT

btfsc FERR

aotc Send Token

btfsc OERR

aoto Send Token

;Save contents of W register

;Save contents of STATUS register

;Test receive interrupt flag

;Check for source of interrupt and

rgc to the appropriate rcutine

rPut contents of STATUS register

: Put contents of W register back

;Test for framing error

;Test for overrun error

75

movf RCREG,W

movwf 0
sublw EOMchr

btfsc Z
bsf RCF
incf FSR,F

movf 0,W
return

;Recover data byte and store it

. "PosUpdate"

PosUpdate
This part of the interrupt service routine is called when pin Aout
alone changes value in a positive direcion. It determines which way
the track moved and updates the position vectors associated with the
track, Ang and Ang+1, accordingly.

bcf INTF

btf ss Bout
goto ADDPos

goto S'JSPos

ADDPos

incf Ang, F

;btfsc Z
,- incf Ang+1, F
movf Ang, W
movwf PORTD

return

SU3Pos
movlw 1
subwf Ang, F

;btfss C
;decf Ang+1,F
movf Ang, W
movwf PORTD
return

Clear the interrupt flag
Determine the direction that the
motor moved bv Dollina ein 3

; - - - "VelUpdate"
VelUpdate
When 50,000 instructions have passed (approximately 10 ms),
this part of the interrupt service is called. It determines
the velocity of the motor by subtracting from the
most recent position of the motor the last saved position.

bcf T0IF
movf Pos01d,W

subwf Ang, W

movwf AngVel
; movf Ang+1,W

btf ss C
;decf Ang+1,W
;movwf AngVel+1

,-Clear the interrupt flag

,-Subtract old position from new

76

; movf Pos01d+1 W
; subwf AngVel+1 F
movf Ang, W

movwf PosOld
; movf Ang+1,W
,-movwf Pos01d+1
movf AngVel,W

movwf PORTD

return

■Put contents of position registers
into old position registers

Start of Main Code Space

START movlw Msa
movwf FSR
bsf RPO
mcvlw 01000011b
mcvwf OPTION

clrf INTCON
movlw 00001000b
mcvwf TRISA
movlw 00100001b
movwf TRISE
movlw 10000000b
movwf TRISC
mcvlw 0
movwf TRISD
movlw 0
movwf TRISE
movlw 00100000b
movwf PIE1

bcf RPO
movlw 01010101b
movwf PORTS

bcf RPO
movlw 00000100b
movwf T2CON

bsf RPO
movlw OFFh
movwf PR2
bcf RPO
;movlw 5
,- movwf DrvCnt
movlw OOOOllOOb
movwf CCP1CON
movlw 200
movwf CCPR1L
call RS232
clrf PosD

:Eankl
ilnterruct on low tc hi or. iransitions

■Prescaler = 1, TMR2 is on

PWM Frequency = 19.53 kHz

PWM mode, 8-bit resolution

;Set UD PIC16C74 for serial comm

77

clrf Pos
clrf Vel
clrf Ang
clrf AngVel
clrf Eine
clrf Einc+1
movlw 4
movwf ADDR
bsf CREN

PrepC movlw Msg
movwf FSR

Prepl movlw 11110000b
movwf INTCON
bcf RCF
movlw 5
movwf i

MAIN movf PosD,W
movwf PosE
movf Pos, w
subwf PosE,w

bcf ss POSE,MSB
goto : Inc

:Dec movlw 1
subwf Eine,F
bcf ss C
decf Einc+1,F
movf Einc+1,W
sublw 128
bcfss Z
goco :Conc
movlw 129
movwf Einc+1
goco : Cone

: Inc incf Eine,F
bcf sc Z
incf Einc+1,F
movf Einc+1,W
sublw 128
bcfss 2
goco :Conc
movlw 255
movwf Eine
movlw 127
movwf Einc+1
,-goco Send_Token
;goco MAIN

Cont

1/64*(163.84*K1) *(100*Pos)
movf K+l, W
movwf ACC
movf Pos, W

(GIE,PIE,RBIE,T0IE)

POSD Dcs

78
movwf ACB

call Mult

bcf C

rrf ACB+1,F

rrf ACB,F

bcf C

rrf ACB+1,F

rrf ACB,F

bcf C

rrf ACB+1,F

rrf ACB.F
bcf c
rrf ACB+l.F
rrf ACB.F
bcf c
rrf ACB+l.F

rrf ACB.F

bcf c
rrf ACBfl.F
rrf ACB.F
movf ACB,W

movwf KX1

movf ACB-l.W

movwf KX1+1

;16*(128-K2)*Vel

movf K+2.W

movwf ACC

movf Vel.W

movwf ACB

call Mule
bcf c

rlf ACB,F

rlf ACB+l.F
movf ACB.W
movwf KX2

movf ACE+l.W
movwf KX2 + 1

1/32-(51.473*K3) *(15 9.15*Ana)
movr K+3.W
movwf ACC
movf Ana, W
movwf ACB
call Mule
bcf C
rrf ACB + 1
rrf ACB, F
bcf C
rrf ACB + 1
rrf ACB, F
bcf C
rrf ACB + 1
rrf ACB, F

mpNfpniFfcm

79

bcf C
rrf ACE+1,F

rrf ACB, F

bcf C
rrf ACB+1,F

rrf ACB,F

movf ACB,W

movwf KX3
movf ACB+1
movwf KX3 + 1

1* (160.854* K4) * (1.5915*AngVel)

movf K + 4.W

movwf ACC
movf AngVel.W

movwf ACB
call Mule
movf ACB,W
movwf KX4
movf AC3+1.W

movwf KX4-1

Add KX1 and KX2 (result in KX2)
movf KX1.W
addwf KX2,F
bcf sc C
incf KX2+1,F
movf KX1+1.W
addwf KX2 * 1, F

Add KX3 and KX4 (resulc in KX4)
movf KX3,W
addwf KX4,F

bcf sc C
incf KX4+1,F
movf KX3+1.W
addwf KX4+1,F

,-Add KX1, KX2, KX3, and KX4 (resulc in KX4;
movf KX2,W
addwf KX4.F

btf sc C
incf KX4 + 1 F
movf KX2 + 1 W
addwf KX4+1 F

;Take negacive of answer

comf KX4,F

comf KX4+1.F

incf KX4,F

befss Z

incf KX4+1,F

Add answer to Eine (result
movf Eint,W
addwf KX4
btfsc C
incf Eint+1,F
movf Eint+1,W
addwf KX4 + 1

80

in KX4)

;CHECK FOR BAD ADDITION

movlw KX4 + 1
movwf CCPR1L

btfss RCF
goto MAIN

;Begin processing messag«
Process

movlw Msa
movwf FSR
movf 0, W
btf sc Z
goto New in:
call CRC
btfss Z
goto lOOD
movlw Msc
movwf FSR
movf ADDR,W
btfsc Z
movf o,w
movwf ADDR
mcvf o,w
subwf ADDR,W
btfss Z
goto Retrans
,-call CRC
inc: FSR,F
movf 0, w
movwf ADDR+1

move aaaress oi
read address
token received
check tc see if

rirst bvte t; PC;

cata needs tc be

:check to see if node is addressable
first byte is defining address

,-message not for this ncde
; check CRC
;move next byte into FSR recister

;move address of sending byte into
;ADDR+l realster

/Execute instruction specified by message
Command

incf FSR, F
movf 0, W
addwf PCL

CmdO return
Cmdl goto Cha Pos
Cnd2 goto Chg PosD
Cmd3 goto Cha Gains
Cmd4 goto New info
CmdS goto New info

81
Cmd6 goto New_Info
Cmd7 goto New_Info
Cmd8 goto New_Info
Cmd9 goto New_Info
CmdA goto New_Info
CmdB goto New_Info
CmdC goto New_lnfo
CmdD goto New_Info
CmdE goto New_Info
CmdF goto New_Info

Chg_Pos

movf Msg+3,W
movwf Pos
movf Msg+4
movwf Vel
goto New_lnfo

Chg_P osD
movf Msg+3,w
movwf PosD
goto New Info

Chg_G a ins

movf Msg+3,W
movwf K+l
movf Msg+4
movwf ■ K+2
movf Msg+5,W
movwf K+3
movf Msg + 6
movwf K+4
movf Msg+7,w
movwf K
goto New info

;Check to see if node has data to be sent; if so, send that data. If
not, pass token
New_lnfo

movf Msg,W
btfsc DTS ;does new data need to be sent?
goto Update
goto Send Token

Update
nop
goto Send Token

/Transmit token to next node in sequence
Send_Token

clrf Msg
movlw EOMchr
movwf Msg+1
goto Retrans

82

/Transmit data in Msg+n to Node 3 until End of Messaae byte is reached
Retrans

aoto Send

:L0

: LI

FSR,F

EOMch:
0

; "CRCCalc" calculates CRC and adds it to messaqe
CRCCalc

Msg
FSR
CRC1
0, w
EOMchr
Z
:L1
0, W
CRC1, F
FSR, F
:L0
CRC1.W
0
CRC1
0

movlw
movwf
clrf
movf
sublw
btfsc
goto
movf
addwf
incf
goto
movf
sublw
rr.ovwf
mcvwf
incf
movlw
movwf
return

Address of "Msg" into W
Load FSR with Command Byte
CRC check holder
Read command

check for end-of-message byte

all bytes read, check if CRC is zero
Read command

next command by:

CRC

:L0

:RC" checks CRC at end of messace

:L1

movlw
mcvwf
clrf
movf
sublw
btfsc
gcto
movf
addwf
incf
goto
movf
return

Msg
FSR
CRC1
0, W
EOMchr
Z
: LI
0, W
CRC1, F
FSR, F
:L0
CRC1, F

Address of "Msg" into W
Load FSR with Command Eyte
CRC check holder
Read command
check for end-of-message byte

all bytes read, check if CRC is zerc
Read command

next command byte

CRC OK, continue processina

or passing on to ; "Send" retransmits back command strina for checkinc
next machine

Send movf INTCON,W ;store entering value of INTCON
movwf Tmplnt
clrf INTCON

PUP mmm wwym

bsf SIP
movlw Msg
movwf FSR

so movf 0, W
movwf ComReg
bcf CREN
bsf RPO
bsf TXEN
bcf RPO

:XO bcf ss TXIF
goto :X0

XMIT movf ComReg,W
movwf TXREG
movf 0, W
sublw EO.Mchr
btf sc Z
goto :Si

:S0a incf FSR, F
goto SO

:S1 bsf RPO
:Sla btf ss TRMT

goto :SIa
;bsf RPO
bcf TXEN
bcf RPO
bsf CREN
movf Tmplnt,W
movwf INTCON
goto PrepO

RS232 bsf RPO
movlw OOlOOOOOb
movwf TXSTA
movlw 32
movwf SP3RG
bcf RPO
movlw lOOOOOOOb
movwf RCSTA
return

Address of "Msg" into W
Load FSR with Command Byte
Read command

;Disable receDtion

Read command
check for end-of-messaae bvte

increment FSR

■restore interruot values

,-Setup transmit

;9600 baud using 20 MHz crystal

: Enable asynchronous serial port

; DELAY subroutine
/delays are set for 9600 baud using 20 MHz crystal

Delay movlw 82
movwf DelCnt

:D0 decfsz DelCnt
goto :D0

Hdelay
movlw 82
movwf DelCnt

:D1 decfsz DelCnt,F
goto :D1

84

return

Signed Multiplication routine: [ACB+1 ACB] = ACB * ACC

Mult clrf SIGN

clrf TMP
clrf TMP+1

clrf ACB + 1

movlw OFFh

btfsc ACB,MSB

movwf ACE + 1

movf ACC,W

movwf TMP1

call :NEG

:M1 clrw

btfsc ACC.O

call :M2
bcf C
rrf ACC, F
bcf C
rlf ACE, F
rlf ACE-1,F
rr.ovf ACC, F

btf ss Z
goto : MI
movf TMP1.W

rr.ovwf ACC
movf TMF-l.W
movwf ACE-1
movf TMP.W

movwf ACE
btfsc SIGN,0

call :NEG0
return

:M2 movf ACE , W
addwf TMP, F

btfss C
incf TMF+l.F
movf ACE^l.W
addwf TMP+1,F
return

:NEG btfsc ACC, 7

goto :NEGI
:NEGa btfss

return

ACB+1,7

:NEG0 incf SIGN,F
comf ACE, 1
comf ACB+1,F

incf ACB,F

btfsc Z
incf ACB-rl, F
return

:NEG1 incf SIGN,F
comf ACCF

85

incf ACC,F
goto :NEGa

; Del ay 4.1 milliseconds (
D41 movlw

movwf
clrf

15
CNT
CNT+1

:L0 decfsz
goto
decfsz
goto
return

CNT+1,
:L0
CNT, F
:L0

F

; Del ay long time
D410

clrf
clrf

CNT
CNT+1

:L0 decfsz
goto
decfsz
goto
return

CNT+1,
:L0
CNT, F
:L0

F

w/ 11.0592 MHz crystal)

